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Chapter 11
Representation & Description

• Image segmented into regions, how to 
represent and describe these regions?

1) In terms of its external characteristics 
(boundary)

2) In terms of its internal characteristics 
(pixels in the region)
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11.1 Representation – Chain code

• Chain codes are used to represent a boundary as a 
connected sequence of straight line segments of 
specified length and direction.

• The representation is based on 4- or 8- connectivity. 
• Chain code is generated by following a boundary in 

clockwise direction and assigning a direction to the 
segments connecting every pair of pixels.

• Disadvantages of chain codes:
1) The chain code is quite long
2) Any small disturbance along the boundary due to 

noise cause change in the code that may not 
related to the shape of the boundary.
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11.1 Representation – Chain code11.1 Representation – Chain code
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11.1 
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– chain code
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11.1 Representation – Chain code

• The chain code of a boundary depends on the 
starting point.

• Normalize the chain code by using the first 
difference of the chain code.

• Example: the chain code is 10103322,
the first difference is 3133030 or 33133030, the 
1st “3” is obtained by connecting the last and the 
first element of the chain.

• Size normalization can be obtained by 
alternating the size of the sampling grid.
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11.1 Representation - Polygon approximation

• Minimum perimeter polygons
– Enclose the boundary by a set of concatenated cells 

(Fig. 11.3).
– The enclosure has two walls corresponding to the 

inside and outside boundaries of the strip of cell.
– Think of the object boundary as a rubber band

contained within the wall.
– The rubber band shrinks and produces a polygon of 

minimum perimeter that fit the geometry established 
by the cell strip. 
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11.1 Representation - Polygon approximation11.1 Representation - Polygon approximation
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11.1 Representation - Polygon approximation

• Merging technique
– Merge points along the boundary until the 

least square error line fit of the points merged 
so far exceeds a preset threshold.

– Difficulties: the vertices do not always 
correspond to inflections (corners) in the 
original boundary.
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11.1 Representation Polygon approximation

• Splitting techniques:
• Subdivide a segment successively into two parts until a 

specified criterion is satisfied.
• The maximum perpendicular distance from a boundary 

segment to the line joining its two end points not exceed 
a preset threshold.

• If it does, the farthest point from the line become a 
vertex, thus subdivide the segment into two sub-
segments,

• This approach has the advantage in seeking prominent 
inflection points
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11.1 Representation - Polygon approximation11.1 Representation - Polygon approximation
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11.1 Representation - Polygon approximation

• Signature
• 1-D functional representation of a boundary.

1) Plot the distance from the centroid to the boundary as 
a function of angles (Fig. 11.5), i. e.,  r(θ).
– Invariant to translation, but depend on the rotation and scaling.
– Normalizing with respect to rotation.
– Select the starting point as the point farthest to the centroid. 

2) Traverse the boundary and plot the angle between a 
line tangent to the boundary at that point and a reference 
line. Then use the Slope density function: (histogram
of tangent-angle values) as signature.
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11.1 Representation - Polygon approximation11.1 Representation - Polygon approximation
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11.1 Representation-boundary segment

• Convex hull H of an arbitrary set S is the smallest 
convex set containing S.

• The difference H–S is call convex deficiency D of 
the set S.

• The region boundary can be partitioned by 
following the contour of S and marking the points at 
which a transition is made into or out of a 
component of the convex deficiency.

• The concept of convex hull and its deficiency are 
equally useful for describing an entire region, as 
well as just its boundary.
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11.1 Representation-boundary segment11.1 Representation-boundary segment
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11.1 Representation - Polygon approximation

• Skeleton of a region can be obtained by thinning 
algorithm

• Medial axis transformation (MAT):
1) For each point in region R, we find its closest neighbor in 

border B.
2) If p has more than one such neighbor, it is said to belong to 

the medial axis (skeleton) of R.
• Thinning algorithm: iteratively delete the edge points 

of a region subject to
1) Does not remove the end points
2) Does not break connectivity
3) Does not cause excessive erosion of the region.
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11.1 Representation - Polygon approximation 11.1 Representation - Polygon approximation 
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11.1 Representation - Polygon approximation 11.1 Representation - Polygon approximation 
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11.1 Representation - Polygon approximation 

• Thinning algorithm
Step 1) flag  a contour point p1 for deletion if the 

following conditions are satisfied:
a) 2≤N(p1)≤6, where N(p1) is the number of neighbors of p1.
b) T(p1)=1, where T(p1) is number of 0-1 transitions in the 

ordered sequence p2, p3,….. p8, p9, p2
c) p2•p4•p6=0
d) p4•p6•p8=0
If all conditions are satisfied, the point is flagged for deletion.

Step 2) Conditions (c) and (d) changed to
c’) p2•p4•p8=0
d’) p2•p6•p8=0
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11.1 Representation - Polygon approximation

• Thinning algorithm
1) Apply step 1 to flag border points for deletion
2) Deleting the flagged point
3) Apply step 2 to flag the remaining border points for 

deletion.
4) Delete the flagged points
The basic procedure is applied iteratively until no further points 

are deleted.
• Condition (a) is violated when p1 is the end point of 

a skeleton stroke.
• Condition (b) is violated when it is applied to points 

on stroke 1 pixel thick.
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11.1 Representation - Polygon approximation 11.1 Representation - Polygon approximation 
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11.1 Representation - Polygon approximation 11.1 Representation - Polygon approximation 
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11.2 Boundary descriptor

• Simple descriptors
1) Length
2) Diameter:  Diam(B)=max[D(pi, pj)] where pi and pj

are points on the boundary. 
3) Major axis and minor axis
4) Basic rectangle
5) Eccentricity = major axis/minor axis
6) Curvature: changes of slope.
7) Point p belongs to a segment which is convex if the 

change of slope at p is nonnegatoive and concave 
otherwise.

8) P is a corner depends on the curvature.
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11.2  Boundary Description - shape number

• The first difference of a chain-coded boundary 
depends on the starting point.

• The shape number of a chain coded boundary 
is defined as the first difference of smallest 
magnitude.

• The difference of a chain code is independent 
of it rotation, it depend on the orientation of 
the grid.  

• The order n of a shape number is defined as 
the number of digits in its representation.
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11.2  Boundary Description- shape number11.2  Boundary Description- shape number
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11.2  Boundary Description- shape number

• Example (Fig. 11.12)
• 1. Find the basic rectangle for n=18 (boundary)
• 2. Find the major and minor axis
• 3. Find the closest rectangle of order 18 is 3x6 
• 4. obtain chain code
• 5. find the difference
• 6. find the shape no.
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11.2 Boundary 
Description

11.2 Boundary 
Description
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11.2 Boundary Description–Fourier Descriptor

• For a K-point digital boundary, starting at an 
arbitrary point (x0, y0), K coordinate pairs (x0, y0), 
(x01, y01), ….,(xK-1, yK-1) are encountered in 
counterclockwise direction.

• Let s(k)=[x(k), y(k)] for k=0,1,….K-1, 
or s(k)=x(k)+jy(k)

• The 1-D DFT of s(k) is

• The inverse DFT of a(u) is
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11.2 Boundary Description- Fourier Descriptor11.2 Boundary Description- Fourier Descriptor
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11.2 Boundary Description - Fourier Descriptor

• If only the first P coefficients (P<K) are used then

• The coefficients {a(u)} carry shape information which are 
insensitive to translation, rotation, and scale change of the shape.

• The descriptors are insensitive to the change of starting point.
• Rotation of a point by an angle θ about the origin of the complex 

plane is accomplish by multiplying the point by ejθ .
• The rotated sequence s(k)ejθ whose Fourier descriptors are
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11.2 Boundary Description - Fourier-Descriptor11.2 Boundary Description - Fourier-Descriptor
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11.2 Boundary Description
-Fourier-Descriptor

11.2 Boundary Description
-Fourier-Descriptor

1) Translation: st(k)=s(k)+Δxy=[x(k)+Δx]+j[y(k)+Δy]

2) Change the starting point of the sequence to k=k0 from k=0 as

sp(k)=s(k-k0)=x(k-k0)+j y(k-k0)
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The contour of hand silhouette. 

11.2 Boundary Description – Fourier Descriptor11.2 Boundary Description – Fourier Descriptor
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• Fourier series of a sequence of points {x(m),
y(m)} can be defined as 

where a(n) and b(n) are the Fourier coefficient 

11.2 Fourier Descriptor
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11.2 Fourier Descriptor

• Assuming local variation of hand shape is smooth 
so that the higher order terms of the Fourier 
descriptor are not necessary. 

• To normalize the size of hand gesture we let 
S(n)=r(n)/r(1) (normalization), and we have

• Using 22 harmonics of the FD’s coefficient, S(n), 
is enough to describe the macroscopic information 
of the hand shape. 

• FD is translation, rotation, and scaling invariance.  

22 |b(n)||a(n)|r(n) += n=1,2,….,22 
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11.2 Fourier Descriptor
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11.2 Boundary Description
-Statistical moment

• The shape of boundary segments can be 
described quantitatively  by using simple 
statistical moments such as mean, variance, and 
higher-order moments.

• Figure 11.5 represented as 1-D function g(r).
• Treat the amplitude of g as a discrete random 

variable v and form an amplitude histogram 
p(vi), i=0,1,…A-1, where A is the number of 
discrete amplitude increments in which we 
divide the amplitude scale. 
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11.2 Boundary Description
-Statistical moment

11.2 Boundary Description
-Statistical moment
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11.2 Boundary Description
-Statistical moment

• The nth moment of v about its mean m is

where the mean is

• The m is the mean and μ2 is the variance.
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11.2 Boundary Description
-Statistical moment

• An alternative approach is normalize g(r) to 
unit area and treat it as histogram.

• g(ri) is treated as the probability of value ri
occuring.

• The moments are
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11.3 Regional Descriptors
-Simple Descriptor

• Area is the number of pixels in the regions
• Perimeter is the length of the boundary.
• Compactness=(perimeter)2/area.
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11.3 Regional Descriptors11.3 Regional Descriptors
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11.3 Regional Descriptors 
-Topological Descriptor

• Topology is the study of properties of a figure 
that are unaffected by any deformation (rubber-
sheet distortion).

• The number of holes: H
• The number of connected components: C
• Euler number E: E=C-H.
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11.3 Regional Descriptors 
-Topological Descriptor

11.3 Regional Descriptors 
-Topological Descriptor
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11.3 Regional Descriptors 
-Topological Descriptor

• Regions represented by straight-line segments (polygonal 
networks), such as Fig. 11.20, has the following relationship in
topology as

E=V-Q+F=C-H
where V is the number of vertices and Q is the number of edges.

• Segmentation is based on the thresholding.
• How the connected components can be used to “finish” the 

segmentation.
• Figure 11.21(b) has 1591 connected components, C=1591, and 

its Euler number E=1552, and H=39.  Figure 11.21(c) shows the 
connected component with 8479 elements
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11.3 Regional Descriptors 
-Topological Descriptor
11.3 Regional Descriptors 
-Topological Descriptor

V-Q+F = C-H = E

7-11+2 = 1-3 = -2
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11.3 Regional Descriptors -Topological Descriptor11.3 Regional Descriptors -Topological Descriptor
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11.3 Regional Descriptors -Texture

• The texture measurement provides the properties such as 
smoothness, coarseness, and regularity. 

• Three principal approaches: statistical, structure, and spectral.
• Statistical approaches:

Let z be a random variable and p(zi), i=0,1,…L-1 is the 
corresponding histogram, L is the number of gray-levels.

The nth moment of z about the mean (m) is

The second moment μ2 (=varianceσ2) can be used to define 
the measure R as

R=0 (for constant density, σ=0), R→1 (for large σ)
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11.3 Regional Descriptors -Texture

• Statistical approach
The 2nd moment μ2 (=varianceσ2) is used to measure the contrast.
The 3rd moment μ3 is used to measure the skewness of the 

histogram.
The 4th moment μ4 is used to measure the relative flatness of the 

histogram.
The measure of “uniformity” of the histogram as

The average entropy measure as

This approach measure no information regarding to the relative 
position of pixels with respect to each other.
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11.3 Regional Descriptors -Texture11.3 Regional Descriptors -Texture
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11.3 Regional Descriptors -Texture11.3 Regional Descriptors -Texture



Image Comm. Lab EE/NTHU 51

11.3 Regional Descriptors -Texture

• Let P be a position operator, A be a k×k matrix 
whose element aij is the number of times that points 
with gray level zi,occur (in position specified by P) 
relative to points with gray level zj, with 1≤i, j ≤k.

• For example, an image with z1=0, z2=1, z3=2 as
• Define the position operator P as “one pixel below 

and one-pixel to the right yields a 3×3 matrix A as
• a11 is the number of times that a point with level 

z1=0 appears related with another point of the same 
level

• a13 is the number of times that a point with level 
z1=0 appears related with another point with gray-
level z3=2
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11.3 Regional Descriptors -Texture

• Let n be the number of point pairs in the image that 
satisfy P (n=16).

• If  C=A/n then cij is the estimate of the joint probability 
that a pair of points satisfying P will have values (zi, zj)

• The matrix C is called gray-level co-occurence matrix.
• C depends on P.
• To analyze a given C to categorize the texture of 

region over which C was computed.
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11.3 Regional Descriptors -Texture

• A set of descriptors based on C are
1) Maximum probability
2) Element difference moment of order k
3) Inverse element difference moment of order k
4) Uniformity
5) Entropy
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11.3 Regional Descriptors -Texture

• Structural approach: a simple “texture” primitive can 
be used to form more complex texture pattern.

1) Define a rule of the form : S→ aS, which indicates that the 
symbol S may be written as aS.

2) Let a represents a circle, and the meaning of “circles to the 
right” is assign a string of the form aaa..., and the rule 
S→ aS generates Fig11.23(b).

3) Define new rules: S→ bA, A→ cA, A→ c, A→ bS, S→ a, 
where b represents “circle down” and c means “circle to the 
left”

4) Generate a string of the form aaabccbaa that corresponding 
to a 3×3 matrix of circles.
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11.3 Regional Descriptors -Texture11.3 Regional Descriptors -Texture



Image Comm. Lab EE/NTHU 56

11.3 Regional Descriptors -Texture

• Spectral approach
• Fourier spectrum is suitable for describing the 

directionality of periodic in 2-D image.
• Three features in Fourier spectrum:

1) Prominent peaks give the principal direction of the 
texture patterns.

2) The location of the peaks give the fundamental spatial 
period of the patterns.

3) By filtering the periodic component, the other non-
periodic pattern can be described by statistical technique.
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11.3 Regional Descriptors -Texture

• Spectral approach
• Express the spectral in polar coordinates as S(r, θ).
• For each direction θ, we have a 1-D expression of the 

spectrum as Sθ(r). 
• Global description as S(r)=Σθ Sθ(r). 
• For each frequency r,  we have a 1-D expression of the 

spectrum as Sr(θ). 
• Global description as S(θ)=Σr Sr(θ). 
• Constitute [S(r),S(θ)] for each pair of (r, θ)
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11.3 Regional 
Descriptors -Texture
11.3 Regional 
Descriptors -Texture

S(r)
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11.3 Regional Descriptors -Texture

• Moment of two dimensional functions
• For 2-D continuous function f(x, y), the moment of order (p+q) 

is defined as

• The central moments are

.   or
where      = m10/m00 and       = m01/m00

The central moments are μ00,(=m00), μ10 (=0),μ01(=0), μ11, 
μ20, μ02, μ21, μ12,…..
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11.3 Regional Descriptors -Texture

• The normalized central moment is defined as 
ηpq=μpq/ μγ

00

where γ=(p+q)/2+1, for p+q=2, 3,…
• Seven invariant moments Φ1, …. Φ7 are 

shown in textbook
• Examples of the invariant moments are shown 

in Figure 11.25.
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11.3 Regional 
Descriptors -Texture

11.3 Regional 
Descriptors -Texture
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11.3 Regional Descriptors -Texture11.3 Regional Descriptors -Texture
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11.4 Use of Principal Component Description

• Treat the vectors x as a random quantity.
• The mean vector is  mx=E{x}
• The covariance matrix: Cx=E{(x–mx)(x– mx)T} 

which is real and symmetric.
• cii is variance of xi, and cij is the covariance between 

elements xi and xj .
• If element xi and xj are uncorrelated then cij=cji=0.
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11.4 Use of Principal Component Description

• For K vector samples from random population, the 
mean vector is

• By expanding the product (x–mx)(x–mx)T, the 
covariance matrix can be approximated as
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11.4 Use of Principal Component Description

• Example 11.9.  x1=[0, 0, 0]T, x2=[1, 0, 0]T x3=[1, 1, 0]T x4=[1, 
0, 1]T .

• We may compute mx and Cx as

mx=1/4[3, 1, 1]T

• The diagonal terms indicate that the three components of the 
vectors have the same variance.

• x1 and x2, x1 and x3 are positive related.
• x2 and x3 are negative related.
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11.4 Use of Principal Component Description

• Because Cx is real and symmetric, we may find a set 
of n orthonormal eigenvectors.

• Let ei and λi, i=1, 2,…n be the eigenvectors and 
eigenvalues of Cx, with λi≥λi+1. 

• Let A be the matrix whose rows are formed from the 
eigenvectors of Cx ordered so that the first row of A
is eigenvector corresponding to the largest 
eigenvalue, and the last row is the eigenvector 
corresponding to the smallest eigenvalue.

• Suppose A is used as a transformation matrix to map 
the x’s into vector denoted by y’s as follows:

y=A(x-mx)
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11.4 Use of Principal Component Description

• The above expression is called Hotelling transform or 
Principal component transform.

• my=E{y}=0
• Cy is=ACxAT.
• Cy is a diagonal matrix.

• The reconstruction of x is x=ATy+mx
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11.4 Use of Principal Component Description

• Instead of using all eigenvectors of Cx, we form 
matrix Ak from k eigenvector corresponding to k
largest eigenvalues. 

• Ak is a transformation matrix of order kxn.
• The y vector would be k dimension.
• The reconstructed vector is no longer exact as

xmyAx += T
kˆ
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11.4 Use of Principal Component Description11.4 Use of Principal Component Description
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11.4 Use of Principal Component Description11.4 Use of Principal Component Description
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11.4 Use of Principal 
Component 
Description

11.4 Use of Principal 
Component 
Description
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11.4 Use of Principal 
Component Description
11.4 Use of Principal 

Component Description
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11.4 Use of Principal 
Component Description
11.4 Use of Principal 

Component Description
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11.5 Relational Description

• Rules for describing the context of relation.
• Apply equally to boundaries and regions.
• Define two primitives a and b as shown in Fig. 11.30.
• We define rewriting rules as

(a) S→aA
(b) A→bS
(c) A→b.
where A and S are variables, and the elements a and b are 
constant corresponding o the primitives.

Rule 1 indicates the staring symbols S can be replaced by aA.
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11.5 Relational Description11.5 Relational Description

Let A and S are variables, 
define rewriting rules as

(a) S→aA

(b) A→bS

(c) A→b.
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11.5 Relational Description11.5 Relational Description
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11.5 Relational Description

• For 2-D object description, we follow the 
contour of an object and code the result with 
segments of specific direction and/or length as 
shown in Figure 11.32.
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11.5 Relational Description

• Another description is to describe the sections 
of an image (small homogeneous region) by 
direct line segments, which can be joined in 
other ways besides head-to-tail connections as 
shown in Figure 11.33.

• Sting descriptions are best suited for 
applications in which connectivity of primitives 
can be expressed in a head-to-tail or other 
connected manner.
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11.5 Relational Description11.5 Relational Description



Image Comm. Lab EE/NTHU 80

11.5 Relational Description

• Sometimes regions may not be contiguous, and we use 
Tree to describe such regions.

• A tree T is a finite set of one or more nodes for which
a) there is a unique node $ designated the root
b) the remaining nodes are partitioned into m disjoint 
sets T1, ….Tm, each of which in turn is a tree called a 
subtree of T.

The tree frontier is a set of nodes at the bottom of the tree 
(the leaves), taken in order from left to right, (see 
Figure 11.34).
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11.5 Relational Description

Two types of information in a tree
a) information about a node
b) information relating a node to its neighbors

For image description, the 1st type of information 
identifies an image structure, whereas the 2nd

type of information defines the physical 
relationship of that substructure to other 
substructure.
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11.5 Relational Description11.5 Relational Description
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