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Chapter 11
Representation & Description

 Image segmented into regions, how to
represent and describe these regions?

1) Interms of its external characteristics
(boundary)

2) In terms of its internal characteristics
(pixels In the region)
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11.1 Representation — Chain code

«  Chain codes are used to represent a boundary as a
connected sequence of straight line segments of
specified length and direction.

« The representation is based on 4- or 8- connectivity.

« Chalin code is generated by following a boundary in
clockwise direction and assigning a direction to the
segments connecting every pair of pixels.

 Disadvantages of chain codes:
1) The chain code is quite long

2) Any small disturbance along the boundary due to
noise cause change in the code that may not
related to the shape of the boundary.
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11.1 Representation — Chain code
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11.1 Representation — Chain code

The chain code of a boundary depends on the
starting point.

Normalize the chain code by using the first
difference of the chain code.

Example: the chain code is 10103322,

the first difference is 3133030 or 33133030, the
1st “3” Is obtained by connecting the last and the
first element of the chain.

Size normalization can be obtained by
alternating the size of the sampling grid.
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11.1 Representation - Polygon approximation

o Minimum perimeter polygons
— Enclose the boundary by a set of concatenated cells
(Fig. 11.3).
— The enclosure has two walls corresponding to the
Inside and outside boundaries of the strip of cell.

— Think of the object boundary as a rubber band
contained within the wall.

— The rubber band shrinks and produces a polygon of
minimum perimeter that fit the geometry established
by the cell strip.
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11.1 Representation - Polygon approximation

a b —— [l
FIGURE 11.3 j‘ ) A 4
(a) Object 1 1
boundary ' k| Vi A\ | F
enclosed by cells. 1 __J
(b) Minimum et il
perimeter ,’
polvgon.
=
| V..
. r A
/ k A
[ k. |
vl i) = N
B e L L[ [ ]




Image Comm. Lab EE/NTHU 8

11.1 Representation - Polygon approximation

e Merging technique
— Merge points along the boundary until the

least square error line fit of the points merged
so far exceeds a preset threshold.

— Difficulties: the vertices do not always
correspond to inflections (corners) in the
original boundary.
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11.1 Representation Polygon approximation

Splitting techniques:
Subdivide a segment successively into two parts until a
specified criterion is satisfied.

The maximum perpendicular distance from a boundary
segment to the line joining its two end points not exceed
a preset threshold.

If it does, the farthest point from the line become a
vertex, thus subdivide the segment into two sub-
segments,

This approach has the advantage in seeking prominent
Inflection points
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11.1 Representation - Polygon approximation
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FIGURE 11.4
(a) Original
boundary.

(b) Boundary
divided into
segments based
on extreme

ﬂ ¢ a c points. {¢) Joining
of vertices.

(d) Resulting
polygon.
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11.1 Representation - Polygon approximation

« Signature
 1-D functional representation of a boundary.

1) Plot the distance from the centroid to the boundary as
a function of angles (Fig. 11.5), 1. e, r(0).
— Invariant to translation, but depend on the rotation and scaling.
— Normalizing with respect to rotation.
— Select the starting point as the point farthest to the centroid.

2) Traverse the boundary and plot the angle between a
line tangent to the boundary at that point and a reference
line. Then use the Slope density function: (histogram
of tangent-angle values) as signature.
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11.1 Representation - Polygon approximation
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11.1 Representation-boundary segment

Convex hull H of an arbitrary set S1s the smallest
convex set containing S.

The difference H - S is call convex deficiency D of
the set S.

The region boundary can be partitioned by
following the contour of S and marking the points at
which a transition 1s made into or out of a
component of the convex deficiency.

The concept of convex hull and its deficiency are
equally useful for describing an entireregion, as
well as just its boundary.
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11.1 Representation-boundary segment

a b

FIGURE 11.6
(a) A region, §,
and its convex
deficiency
(shaded).

(b) Partitioned
boundary.
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11.1 Representation - Polygon approximation

«  Skeleton of a region can be obtained by thinning
algorithm

« Medial axistransformation (MAT):

1) For each point in region R, we find its closest neighbor in
border B.

2) If p has more than one such neighbor, it is said to belong to
the medial axis (skeleton) of R.

* Thinning algorithm: iteratively delete the edge points
of a region subject to
1) Does not remove the end points
2) Does not break connectivity
3) Does not cause excessive erosion of the region.
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11.1 Representation - Polygon approximation

@ .-'"'K N P .\ l;‘f il b C

K_.f" ‘x.k f.f" ‘xk f.f’

" FIGURE 11.7
Medial axes
(dashed) of three
simple regions.
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11.1 Representation - Polygon approximation

FIGURE 11.8
Neighborhood
arrangement used
bv the thinning
algorithm.
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11.1 Representation - Polygon approximation

«  Thinning algorithm
Step 1) flag a contour point p, for deletion 1f the
following conditions are satisfied:
a) 2<N(p,)<6, where N(p,) 1s the number of neighbors of p,.
b) T(p,)=1, where T(p,) 1s number of 0-1 transitions in the
ordered Sequence p,, Psz,....- Pgs Pos Po
C) P,*P4*Ps=Y
d) pyepseps=0
If all conditions are satisfied, the point is flagged for deletion.
Step 2) Conditions (¢) and (d) changed to
C’) P2*p4*ps=0
d”) pr*pseps=0
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=581 1.1 Representation - Polygon approximation

Rafael €. Gonzalez

*  Thinning algorithm
1) Apply step 1 to flag border points for deletion
2) Deleting the flagged point

3) Apply step 2 to flag the remaining border points for
deletion.

4) Delete the flagged points

The basic procedure 1s applied iteratively until no further points
are deleted.

 Condition (a) 1s violated when p1 1s the end point of
a skeleton stroke.

* Condition (b) 1s violated when it 1s applied to points
on stroke 1 pixel thick.



FIGURE 11.9
Iustration of
conditions (a)
and (b) in
Eq.(11.1-1). In
this case
N(p,) = 4and

T(p,) = 3.
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11.1 Representation - Polygon approximation

0 0 1
I 2 0
1 0 1
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11.1 Representation - Polygon approximation

FIGURE 11.10
Human leg bone
and skeleton of
the region shown
superimposed.
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11.2 Boundary descriptor

Simple descriptors

D
2)

3)
4)
5)
6)
7)

§)

Length

Diameter: Diam(B)=max[D(p;, p;)] where p; and p;
are points on the boundary.

Major axis and minor axis

Basic rectangle

Eccentricity = major axis/minor axis

Curvature: changes of slope.

Point p belongs to a segment which 1s convex if the
change of slope at p is nonnegatoive and concave
otherwise.

P 1s a corner depends on the curvature.
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11.2 Boundary Description - shape number

Richard E, Woods

* The first difference of a chain-coded boundary
depends on the starting point.

» The shape number of a chain coded boundary
1S defined as the first difference of smallest
magnitude.

» The difference of a chain code is independent
of 1t rotation, 1t depend on the orientation of
the grid.

* The order n of a shape number is defined as
the number of digits 1n 1ts representation.
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Order 4

|

Chaincode: 0 3 2 1

Difference: 3 3 3 3

Shapeno.: 3 3 3 3

Chaincode: 0 0 3 3 2 2 1
Difference: 3 0 3 0 3 0 3

Shapeno: 0 3 0 3 0 3 0 :
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Order 6
» |
o032 21
303303
033033

Order 8
-

. I I

| i I
03032211 oo003222
33133030 3003300
03033133 00330023

11.2 Boundary Description- shape number

FIGURE 11.11 All
shapes of order 4,
6, and 8. The
directions are
from Fig. 11.1(a).
and the dot
indicates the
starting point.
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11.2 Boundary Description- shape number

« Example (Fig. 11.12)
* 1. Find the basic rectangle for n=18 (boundary)

2. Find the major and minor axis

* 3. Find the closest rectangle of order 18 1s 3x6
e 4, obtain chain code
5. find the difference

6. find the shape no.
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11.2 Boundary
Description

ab

¢ d

FIGURE 11.12
Steps in the
generation of a
shape number.

Chaincode: 00003 0032232221211
Difference: 3 0003 1033013003130
Shapeno: 0 003 1 0330130031303
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11.2 Boundary Description—Fourier Descriptor

For a K-point digital boundary, starting at an
arbitrary point (X, Yp), K coordinate pairs (X,, Vo),

(Xo1» You)» ----(Xk.1» Yi.1) are encountered in
counterclockwise direction.

Let s(K)=[x(K), y(K)] for k=0,1,...K-1,

or s(=x(K)+}y(K -
The 1-D DFT of g(K) is a(u) = EZ s(k)e 127K/

: 1 &4 |
The inverse DFT of a(u) is S(K) = EZ a(u)e!2™ K
k=0
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11.2 Boundary Description- Fourier Descriptor
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FIGURE 11.13 A digital boundary and its representation as a complex sequence. The points
(X, ¥) and (x,, y; ) shown are (arbitrarily) the first two points in the sequence.
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11.2 Boundary Description - Fourier Descriptor

If only the first P coefficients (P<K) are used then

P
é(k) _ Z a(u)ejZﬂuk/K
u=0

The coefficients {a(u)} carry shape information which are
insensitive to translation, rotation, and scale change of the shape.

The descriptors are insensitive to the change of starting point.

Rotation of a point by an angle #about the origin of the complex
plane is accomplish by multiplying the point by €¢ .
The rotated sequence S(K)€¢ whose Fourier descriptors are

K-1
3 (U= > s(ke'’e " ~ auye”
k=0
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11.2 Boundary Description - Fourier-Descriptor

FIGURE 11.14
Examples of : . i - " o
reconstruction

from Fourier : :
descriptors. Pis - 3 S P
the number of : . R :
Fourier : . . ' .
coefficients used ~— s=ererrrrmerees
in the Original (K = 64) P=2 P =4 P=5
reconstructionof
the boundary. -7 e eI e esmreseas .

P =106 P =24 P =32 P =40
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TABLE 11.1

Some basic

Transtormation Boundary Fourier Descriptor
Identity s(k) alu)

Rotation s.(k) = s(k)e" a(u) = a(u)e”
Translation s(k) = s(k) + Ay, a(u) = alu) + A, o(u)
Scaling s;(k) = as(k) as(u) = aa(u

Starting point 5,(k) = sk — k) a,(u) = a(u)e FHn/K

properties of
Fourier
descriptors.

1) Translation: §(K)=s(k)+ 4,,= [X(K)+ Ax]+][y(k)+ Ay]

2) Change the starting point of the sequence to k=k, fromk=0 as

Sp(K)=8(k-Ko)=X(k-ko)+] Y(k-Ko)



Image Comm. Lab EE/NTHU 32

11.2 Boundary Description — Fourier Descriptor

M

At

The contour of hand silhouette.
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11.2 Fourier Descriptor

» Fourier series of a sequence of points {x(m),
y(m)} can be defined as

X(m) — Z a(n)ej27mm/N y(m) _ zb(n)ejzﬂnm/N

where a(n) and b(n) are the Fourier coefficient

a(n) = ZN: X(m)e—jme/N b(n) — Z_ y(m)e—jme/N
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11.2 Fourier Descriptor

Assuming local variation of hand shape is smooth
so that the higher order terms of the Fourier
descriptor are not necessary.

To normalize the size of hand gesture we let
S(n)=r(n)/r(1) (normalization), and we have

r(n)=+/la(n) F +|b(n) P n=12...,22

Using 22 harmonics of the FD's coefficient, S(n),
is enough to describe the macroscopic information
of the hand shape.

FD is translation, rotation, and scaling invariance.
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(¢) Zoom in 12:10

(a) Original image
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11.2 Fourier Descriptor

(b) Rotation 90

(d) Zoom out 8:10

0.4}
0.3}
0.2}

01}

0

*: original
+: rotated 30

o: 12:10
--: 8:10

0 5 10 15

20

25

(e) Fourier descriptor vectors of the four different shapes without the first term.
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11.2 Boundary Description
-Statistical moment

The shape of boundary segments can be
described quantitatively by using simple
statistical moments such as mean, variance, and
higher-order moments.

Figure 11.5 represented as 1-D function g(r).

Treat the amplitude of g as a discrete random
variable vV and form an amplitude histogram
p(v), 1=0,1,...A-1, where A is the number of
discrete amplitude increments in which we
divide the amplitude scale.
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11.2 Boundary Description
-Statistical moment

a b 2(r)

FIGURE 11.15

(a) Boundary
segment.

(b) Representation
as a 1-D function.

L ot
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11.2 Boundary Description
-Statistical moment

e The nth moment of v about its mean mis

un<v>:Z<w —m)" p(v;)

where the mean is -
m=>» v,p(V)
-0

* The mis the mean and y, 1s the variance.
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11.2 Boundary Description
-Statistical moment

* An alternative approach 1s normalize g(r) to
unit area and treat 1t as histogram.

* g(r;) 1s treated as the probability of value r.
occuring.

K-1
* The moments are 4 _(r)= Z(ri —m)"g(r,)
=0

K-1
where m=3"r,g(1)
1=0
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11.3 Regional Descriptors
-Simple Descriptor

* Area 1s the number of pixels in the regions
* Perimeter 1s the length of the boundary.

« Compactness=(perimeter)?/area.



igital % Image Comm. Lab EE/NTHU 41

11.3 Regional Descriptors

Region no,  Ratio of lights per
(from top) region to total lights

! 0.204
2 0.640
3 (L0449
4 107

FIGURE 11.16 Infrared images of the Americas at night. { Courtesy of NOAA.)
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11.3 Regional Descriptors
-Topological Descriptor

Topology 1s the study of properties of a figure
that are unaffected by any deformation (rubber-
sheet distortion).

The number of holes: H
The number of connected components: C
Euler number E: E=C-H.
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11.3 Regional Descriptors
-Topological Descriptor

FIGURE 11.17 A region with two holes.

FIGURE 11.18 A region with three connected components.
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11.3 Regional Descriptors
-Topological Descriptor

« Regions represented by straight-line segments (polygonal
networks), such as Fig. 11.20, has the following relationship in
topology as

E=V-Q+F=C-H
where V 1s the number of vertices and Q 1s the number of edges.
« Segmentation is based on the thresholding.

* How the connected components can be used to “finish” the
segmentation.

* Figure 11.21(b) has 1591 connected components, C=1591, and
its Euler number E=1552, and H=39. Figure 11.21(c) shows the

connected component with 8479 elements
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11.3 Regional Descriptors
-Topological Descriptor

-

[

ab
FIGURE 11.19 Regions with Euler number equal to 0 and —1, respectively.

V-Q+F =C-H =E
7-11+2 =1-3 = -2

FIGURE 11.20 A region containing a polvgonal network.
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11.3 Regional Descriptors -Topological Descriptor

ab

c d

FIGURE 11.21

(a) Infrared
image of the
Washington.
D.C. area.

(b) Thresholded
image. (¢) The
largest connected
component of (b).
Skeleton of (¢).

= Batgel €. Gonaale:
Richard £, Woods
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11.3 Regional Descriptors -Texture

* The texture measurement provides the properties such as
smoothness, coarseness, and regularity.

» Three principal approaches: statistical, structure, and spectral.
« Statistical approaches:

Let Zbe a random variable and p(z), 1=0,1,...L-1 is the
corresponding histogram, L 1s the number of gray-levels.

The nth moment of z about the mean (M) 1s |
1= (z-m)"9g(z)

The second moment 4, (=variance 2) can be used to define
the measureRas _,_ 1
1+ 0°(2)

R=0 (for constant density, g =0), R—1 (for large o)
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11.3 Regional Descriptors -Texture

Statistical approach
The 2"d moment 4, (=variance ¢ °) is used to measure the contrast.

The 3" moment y; is used to measure the skewness of the
histogram.

The 4" moment 1, is used to measure the relative flatness of the
histogram.

The measure of “uniformity” of the histogram as U = Z p*(z)

=0

The average entropy measure as €= —Z_ P(z)log, p(z)

=0

This approach measure no information regarding to the relative
position of pixels with respect to each other.
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11.3 Regional Descriptors -Texture

i e

FIGURE 11.22 The white squares mark. from left to right, smooth, coarse, and regular textures. These are
optical microscope images of a superconductor, human cholesterol, and a microprocessor. {Courtesy of
Dr. Michael W. Davidson. Florida State University.)
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11.3 Regional Descriptors -Texture

TABLE 11.2
Texture measures
for the subimages

Standard Third
Textore  Mean  deviation R (normalized) moment Uniformity Entropy

shown in Smooth 82.64 11.79 (0.002 —().103 0.026 5434
Fig. 11.22. Coarse  143.56 74.63 0.079 —0.151 0.003 1.783

Regular ~ 99.72 33.73 0.017 (.750 0.013 6.674
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11.3 Regional Descriptors -Texture

« Let P be a position operator, A be a kxk matrix 0 0\ 0 12
whose element &; is the number of times that points I 1 0 1 1
with gray level z,occur (in position specified by P) 2 2 1 o 0
relative to points with gray level z, with 14, | <k 11 "xo 2\0

* For example, an image with 2,=0, z,=1, z,;=2 as \0 0 1\ 0 1

 Define the position operator P as “one pixel below
and one-pixel to theright yields a 3x3 matrix A as

* &y 18 the number of times that a point with level @ ) @
z,=0 appears related with another point of the same
level A=|2 3 2

* Q3 1s the number of times that a point with level 0 2 0

z,=0 appears related with another point with gray- - .
level z,=2



Image Comm. Lab EE/NTHU 52

11.3 Regional Descriptors -Texture

Let n be the number of point pairs in the image that
satisty P (n=16).

If C=A/n then C;; 1s the estimate of the joint probability
that a pair of points satistying P will have values (z;, z)

The matrix C is called gray-level co-occurence matrix.
C depends on P.

To analyze a given C to categorize the texture of
region over which C was computed.
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11.3 Regional Descriptors -Texture

A set of descriptors based on C are

Y
2)
3)
4)
5)

Maximum probability

Element difference moment of order K
Inverse element difference moment of order k
Uniformity

Entropy
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11.3 Regional Descriptors -Texture

Structural approach: a simple “texture” primitive can
be used to form more complex texture pattern.

1) Define a rule of the form : S— a3 which indicates that the
symbol S may be written as aS

2) Let arepresents a circle, and the meaning of “circlesto the
right” is assign a string of the form aaa..., and the rule
S— aSgenerates Figl11.23(b).

3) Define new rules: S— bA, A—>cA, A—>c, A>bS S—a,
where b represents “circle down” and ¢ means “circleto the
left”

4) Generate a string of the form aaabccbaa that corresponding
to a 3x3 matrix of circles.



FIGURE 11.23

(a) Texture
primitive.

(b) Pattern
generated by the
rule § — asS.

() 2-D texture
pattern generated
by this and other
rules.
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11.3 Regional Descriptors -Texture

O
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11.3 Regional Descriptors -Texture

«  Spectral approach

e  Fourier spectrum 1s suitable for describing the
directionality of periodic in 2-D 1mage.

 Three features in Fourier spectrum:

1) Prominent peaks give the principal direction of the
texture patterns.

2) The location of the peaks give the fundamental spatial
period of the patterns.

3) By filtering the periodic component, the other non-
periodic pattern can be described by statistical technique.
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11.3 Regional Descriptors -Texture

Spectral approach
Express the spectral in polar coordinates as S(r, 6).

For each direction &, we have a 1-D expression of the
spectrum as S(I).

Global description as Jr)=2% , S/(r).
For each frequency r, we have a 1-D expression of the

spectrum as S(6).
Global description as J =2 S(6).

Constitute [ST),3 8)] for each pair of (1, 6)
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11.3 Regional
Descriptors -Texture

Ly \
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a b HGURETT.24 (a) Image showing periodic texture. (b) Spectrum. (c) Plot of S(r). (d) Plot
¢ d of §(8). (¢) Another image with a different type of periodic texture. (f) Plot of S(8).
¢ [ (Courtesy of Dr. Dragana Brzakovic, University of Tennessee.)
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11.3 Regional Descriptors -Texture

« Moment of two dimensional functions

* For 2-D continuous function f(X, y), the moment of order (p+0Q)
1s defined as

m,=[ [ xPy'f(x y)dxdy =3 X"y f(x,y)
* The central moments are o
=1 [ (x=%)P(y—y)* f(x, y)dxdy
or Hop =2, 2. (X=3)"(Yy=Y)* f(X,y)
where X =myy/ mgo and Y = My,/ My,
The central moments are (£ o,,(=my), £ 1o (F0), 1L 51(=0), 1,
K0 Koo Lors Koo
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11.3 Regional Descriptors -Texture

* The normalized central moment is defined as
/Rl L U
where 7 =(p+Qq)/2+1, for p+g=2, 3,...
* Seven invariant moments @, .... @~ are
shown 1n textbook

* Examples of the invariant moments are shown
in Figure 11.25.
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11.3 Regional
Descriptors -Texture

a

b ¢
d e

FIGURE 11.25
Images used to
demonstrate
properties of
moment
invariants (see
Table 11.3).
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Image
Processing

11.3 Regional Descriptors -Texture

Invariant (Log)  Original  Half Size  Mirrored Rotated2® Rotated 45° EL]B[:']E [: [I 3

by 6.249 6.226 6.919 6.253 6.318 invariants for the
b 17.180 16.954 19.955 17.270 16.803 images in

s 22.655 23.531 26,689 22.836 19.724 Figs. 11.25(a)-(e).
hy 22.919 24.236 26.901 23.130 20.437

chs 45.749 48.349 53.724 46.136 40.525

e 31.830 32.916 37.134 32.068 20.315

e 45.589 48.343 53.590 46.017 40.470
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11.4 Use of Principal Component Description

Treat the vectors X as a random quantity.

The mean vector 1s m =E{x}

The covariance matrix: C.=E{(X - m)(X - m )’}
which 1s real and symmetric.

Cjj 18 variance of x;, and ¢;; 1s the covariance between
elements X and X; .

If element X and X are uncorrelated then ¢;=c;=0.
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11.4 Use of Principal Component Description

* For K vector samples from random population, the
mean vector 1s 1 &
m, =— Zxk
Kia

* By expanding the product (X - m )(X - m,)!, the
covariance matrix can be approximated as

1 < T T
Cx = _Zxkxk —mem,
k=1



Image Comm. Lab EE/NTHU 65

11.4 Use of Principal Component Description

+ Example 11.9. %[0, 0, 01", x,=[1, 0, 0]" x,=[1, 1, 0]" x,=[1,
0,11 .

* We may compute m_and C,_ as

NESRE.
m=1/4[3,1,1]"  C=71 3. -1
1 -1 3

* The diagonal terms indicate that the three components of the
vectors have the same variance.

* X, and X,, X; and X; are positive related.
* X, and X, are negative related.
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11.4 Use of Principal Component Description

Because C, 1s real and symmetric, we may find a set
of n orthonormal eigenvectors.

Lete and 4, 1=1, 2,...n be the eigenvectors and
eigenvalues of C,, with A>A. ..

Let A be the matrix whose rows are formed from the
eigenvectors of C, ordered so that the first row of A
1s e1genvector corresponding to the largest
eigenvalue, and the last row is the eigenvector
corresponding to the smallest eigenvalue.

Suppose A 1s used as a transformation matrix to map
the X’s into vector denoted by y’s as follows:

y=A(X-m,)
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11.4 Use of Principal Component Description

» The above expression is called Hotelling transform or
Principal component transform.

+ m=E{y}=0
+ C,is=AC,AT.

 C,1s a diagonal matrix.

C =

y 2

0 A

 The reconstruction of X is X=ATy+m_



Image Comm. Lab EE/NTHU 68

11.4 Use of Principal Component Description

* Instead of using all eigenvectors of C , we form
matrix A, from K eigenvector corresponding to kK
largest eigenvalues.

« A, is a transformation matrix of order kxn.
* The Yy vector would be k dimension.

* The reconstructed vector 1s no longer exact as

* T
X=Ay+m
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11.4 Use of Principal Component Description

FIGURE 11.26 Six
spectral images
from an airborne
scanner.
{Courtesy of the
Laboratory for
Applications of
Remote Sensing,
Purdue
University.)

Channel 1

Channel 3 Channel 4
-

Channel 5 Channel 6
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11.4 Use of Principal Component Description

TABLE 11.4

Channel numbers
and wavelengths

Channel Wavelength band (microns)

(0.40-0.44
0.62-0.66
0.66-0.72
0.80-1.00
1.00-1.40
6 2.00-2.60

L = W a o—
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< nre
aes
11.4 Use of Principal Lt
Component pACLL
DeSCI'iptiOIl :;::: Spectral band 6
_ %EE Spectral band 5
xrjl / Spectral band 4
x =5
'::4 spectral band 3
x . .
L Spectral band 2
Spectral band 1

FIGURE 11.27 Formation of a vector from corresponding pixels in six images.

A A A3 Ay As Ag

3210 U3l4 118.5 83.88 64,00 13.40

TABLE 11.5
Eigenvalues of
the covariance
matrix obtained
from the images
in Fig. 11.26.
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....

Component 1 ‘ Component 2

11.4 Use of Principal
Component Description

Component 3 Component 4

Component 5 Component 6

FIGURE 11.28 Six principal-component images computed from the data in Fig. 11.26.
(Courtesy of the Laboratory for Applications of Remote Sensing, Purdue University.)
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.
b =
4

11.4 Use of Principal
Component Description

.
- =
I-d
L -]
-l

a
s

FIGURE 11.29 (a) An object. (b) Eigenvectors. (¢) Object rotated by using Eq. (11.4-6).
The net effect is to align the object along its eigen axes.
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11.5 Relational Description

« Rules for describing the context of relation.
* Apply equally to boundaries and regions.
* Define two primitives a and b as shown in Fig. 11.30.
* We define rewriting rules as
(a) S—»aA
(b) A—>bS
(c) A—b.

where A and Sare variables, and the elements a and b are
constant corresponding o the primitives.

Rule 1 indicates the staring symbols Scan be replaced by aA.
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11.5 Relational Description

ab a

BeE —— —
FIGURE 11.30 lh
(a) A simple

staircase
structure.
(b) Coded
structure.

Let A and S are variables,
define rewriting rules as

(a) S»aA
(b) A—>bS
(c) A—Dh.



FIGURE 11.31
Sample
derivations for

the rules § — aA.

A — bS. and
A - b.
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11.5 Relational Description

[ ]

b
a

b
(1,2.1,2,1,3)
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11.5 Relational Description

* For 2-D object description, we follow the
contour of an object and code the result with
segments of specific direction and/or length as
shown in Figure 11.32.

HDU]IdH]’}" FIGURE 11.32
Coding a region
boundary with
directed line
segments.

Starting
point
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11.5 Relational Description

* Another description 1s to describe the sections
of an 1image (small homogeneous region) by
direct line segments, which can be joined 1n
other ways besides head-to-tail connections as
shown 1n Figure 11.33.

* Sting descriptions are best suited for
applications in which connectivity of primitives
can be expressed 1n a head-to-tail or other
connected manner.
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Image
Processing

Abstracted Head Head
primitive

Abstracted
primitive

pot T an T
SR

Tail

11.5 Relational Description Tai

ab
v
—_—
d / \
a € d
FIGURE 11.33 (a) Abstracted primitives. (b) Operations among primitives. (¢) A set of
specific primitives. (d) Steps in building a structure.
1 I h
h
+ (~d) d+ [c+ (~d)]
A A ‘

a+b (a+b)=c ld + [c+ (~d)]} =[(a+b)=c]
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11.5 Relational Description

e Sometimes regions may not be contiguous, and we use
Tree to describe such regions.

A tree T 1s a finite set of one or more nodes for which
a) there 1s a unique node $ designated the root

b) the remaining nodes are partitioned into mdisjoint
sets Ty, .... T, each of which 1n turn 1s a tree called a
subtree of T.

The tree frontier 1s a set of nodes at the bottom of the tree

(the leaves), taken 1n order from left to right, (see
Figure 11.34).
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11.5 Relational Description

Two types of information in a tree
a) information about a node
b) information relating a node to its neighbors

For image description, the 1% type of information
identifies an image structure, whereas the 2"
type of information defines the physical
relationship of that substructure to other
substructure.
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11.5 Relational Description

VAN
/

X

FIGURE 11.34 A simple tree with root § and frontier xy.
$
a c
d €

ab

FIGURE 11.35 (a) A simple composite region. (b) Tree representation obtained by
using the relationship “inside of.”
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