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Chapter 12 Object Recognition

* Images regions are treated as objects or
patterns

* Object recognition — pattern recognition
 Pattern recognition:

(a) decision-theoretic: quantitative
descriptor, 1.¢., length, area, texture.

(b) Structural: qualitative descriptor, 1.e.,
relational descriptor.
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2.1 Patterns and Pattern Classes

A pattern 1s an arrangement of descriptors.
Feature 1s used to denote a descriptor.

A pattern class 1s a family of patterns that share some
common properties.

Pattern recognition — assign patterns to their
respective classes.

Three common pattern arrangements: vectors, strings
and trees.

Pattern vectors are X=[x,, x,,...x, | where each
component x; represent the ith descriptor and # is the
total number of descriptors.
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2.1 Patterns and Pattern Classes

FIGURE 12.1 Xn
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by two
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two measurement X=[x,, x,] = TR
where x; and x, - -
corresponding to petal length =, o oo
and width
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2.1 Patterns and Pattern Classes
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FIGURE 12.2 A noisy object and its corresponding signature.

We represent each object by its signature, and form the pattern
vectors by letting x,=r(0,) x,=r(8,) ,...... x,=1(0)).
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2.1 Patter ns and Pattern Classes

 Pattern classes are characterized by quantitative
| nformation or structural relationships

* |.e, In fingerprint recognition. interrelationship
of print features called minutiae.

« Minutiae and their relative size and location are
used as primitive components to describe the
ridge property, i.e., ending, branching, and
merging,...
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2.1 Patterns and Pattern Classes

Fr

FIGURE 12.3 (a) Staircase structure. (b) Structure coded in terms of the primitives a and
b to vield the string description ... ababab ... .
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2.1 Patterns and Pattern Classes

FIGURE 12.4
Satellite image of
a heavily built
downtown area
(Washington,
D.C.) and
surrounding
residential areas.
(Courtesy of
NASA.)
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2.1 Patterns and Pattern Classes

Image
Downtown Residential
Buildings Highways Housing Shopping Highways
/ \ / ‘ \\\\ /|\ malls / \
High Large  Multiple Numerous Loops ] . i
densitity structures intersections Low Small Wnndgd Single  Few
- density  structures  areas intersections

FIGURE 12.5 A tree description of the image in Fig. 12.4.
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m o ssv-f' 12.2 Recognition based on decision-theor etic
-f' o v md hOdS

* Decision-theoretic approaches to recognition are
based on the use of decision (or discriminant)
function.

* Let Xx=[x,, x,,...x, | represent an n-dimensional pattern
vector. For W pattern classes @ ¢,... @y, find the W
decision functions d,(X), d,(X),...dyw(X) with the
property that , 1f a pattern X belongs to class @,...
then

di(X) > di(x),...for j=1, 2...\W; j i
* The decision boundary separating class @; from @,
1s given by values of X for which d.(X)=d. (X)
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12.2.1 Matching

« Recognition techniques represent each class by
a prototype pattern vector.

* The simple approach 1s the minimum-distance
classifier, which compute the (Euclidean)
distance between the unknown and each of the
prototype vectors.

e It choose the smallest distance to make a
decision
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12.2.1 Matching

e Minimum distance classifier

* The prototype of each pattern class to be the mean
vector of the patterns of that class: 1 ZX

j
N, xca,
where N, 1s the number of patterns from class ;.

« Using the Euclidean distance to determine the
closeness as the distance measure

D)= x-m | j=1,2,..W
where | a| =(@-a)"* is the Euclidean distance norm.

* We then assign X to class @;1f D;(X) 1s the smallest
distance.
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12.2.1 Matching

« Selecting the smallest distance 1s equivalent to

evaluating the functions , 1
d,(X)=x'm, _Emjmj

and assigning X to class @1t d;(X) yields the largest
numerical value.

* The decision boundary between @; and @; for a
minimum distance classifier 1s

dy(x) = di(x)_dj(x) = XT(mi o mj) _%(mi - mj)T(mi B mj)

 Itis a surface indicating a perpendicular bisector (a line
or a surface) of the line segment joining m; and m;.
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12.2.1 M atching

X5 FIGURE 12.6
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Equ. of boundary: d,,(X) =d,(X)—d,(X)=2.8x,+1.0x, -8.9=0
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12.2.1 M atching
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12.2.1 Matching

« Matching by correlation

* The correlation between f(x, y) and w(x, y) 1s
c(x, y)=22f(s, Hw(x+s, y+i)
forx=0, 1, 2,....M-1 and y=0, 1, 2,.. .N-1.

e The correlation c(x, y) 1s sensitive to the changes in the
amplitude of f and w, a normalization is applied on the

c(x, y) as B B
S f(s.6) = f(s,0)| [+, +6)—w)

S t

{22[ 1(s,0)— F (5,0 [wix+5,y+1) —w]z}

y(x,y)=
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Y

Origin

wixy, + 8 ¥ +1)

flx.y)

FIGURE 12.8 Arrangement for obtaining the correlation of f and w at point (x,, y[]).
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abc

FIGURE 12.9

(a) Image.

(b) Subimage.

(¢) Correlation
coefficient of (a)
and (b). Note that
the highest
(brighter) point in
(¢) occurs when
subimage (b) 1s
coincident with the
letter “D ™ in (a).
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12.2.2 Optimal statistical classifier

« Assume the probability that a particular pattern X
comes from class @ ;1s denoted as p( @ ; |X).

* It the pattern classifier decides that X came from @
and when 1t actually came from & . and 1t incur a loss,
denoted as L.

* A pattern X may be assigned to any class, and the
average loss incurred 1s

(0 =3 Ly (@)
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12.2.2 Optimal statistical classifier

* Under the Bayesian rule: p(A|B)=p(A)p(B|A)/p(B),

we have |
r(X)=——2 L,p(Xj@,) p(®;)
’ p(x) = p(e
* Since p(X) 18 common to all the r(X), it can be
dropped as

r(X) = Z_:Lk]-p(X\wk)p(wk)

* The classifier minimizes the total average loss 1s
called the Bayes classifier.
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12.2.2 Optimal statistical classifier

» The Bayes classifier assigns a unknown pattern X to
clasVsV @; 1 r(X) <r(X) fo;pj—l 2,...W,and j #i
> L,p({@,) p(e,) < ZLq,p<x\co )p(@,)
. Assklzllme the 0se functlonL i=1- 0 ;; then we have
r(X) = Z(l 5,)p(X|w,) p(@,) = p(X) - p(X|®,) p(®,)
* The Ba;l;els classifier assign a pattern to class @ ;1f

* Or
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12.2.2 Optimal statistical classifier

Bayes classifier for Gaussian classes
* Consider 1-D problem with two classes W=2.

» The Bayes decision function is

(xmmy)?

d,(x) = p(x|w) p(@,) = éﬁe % (@)

* The boundary between two classes 1s x=x, such that d,(x,)= d,(x,)

» For equal-likely case p(@ |)=p(w,)=1/2, then p(x, |@ ) = p(x,) | @,
), €.g., boundary (at x=Xx, ), 1s shown 1n Fig. 12.10.

* For non-equal-likely case p(@ ) #p(w,), 1f @, 1s more likely,
then x, move to the right, else it moves to the left
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12.2.2 Optimal statistical classifier

FIGURE 12.10 4
Probability
density functions
for two 1-D
pattern classes.
The point x;
shown is the
decision boundary
if the two classes
are equally likely
LD occur.

Probability density

¥
-
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12.2.2 Optimal statistical classifier

* In n-dimensional case, the Gaussian density of vector is

the jth pattern class has the form as
1 ——(x m;)" C;'(x-m;)

(2 )n/z‘c ‘1/2

where the mean vector 1s m. —E 41X} and covariance
matrix C,=E; {(X- m )(x-m’ ) !

. Approxnnatmg the mean by the averaging

p(Xe,) =

1 1
m=—->x and C =— Yxx"-mm’
J N J N J ]
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12.2.2 Optimal statistical classifier

 The decision function can also be written as

d,(x) = In[p(X|@,) p(@,)] = In p(x|@,) +In p(,)
e For n-dimensional Gaussian density function, we have

n ) 1 1 _
d,(x)=In p(e,) =~ (27) 2 —Eln‘CJ‘ - lx- m ) C;'(x-m))]
+ Simplified as d (x) = 1np(wj)—%1n\cj\ —%[(x -m ) Cl(x-m))]

* Ifall covariance matrix are equal C;=C f(ir all j then
d;(X)=Inp(w;)+ XTC;lmj — E(me;lmj)
1
_ _ Tl T
» IfC=lthen d,(X)=xC mj—zmjmj
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12.2.2 Optimal statistical classifier

. Example 1'3' 1_1_ 1'3 1 1]
mlzzl my=7 3 CIZCIZEI 3 -1
1 1] 1 -1 3
We assume equal-likely case p(w )=p(w,)=1/2 then
dj(x):xTC‘lmj—%mfmj
(8 -4 —4]
where C*= |-4 8 4
-4 4 8

The decision functions: d;(X)=4x,-15 and d,(X)= -4x ,+8x,+8x;-5.5
Decision surface: d(X) = d,(X)-d,(X) = -4x,;+8x,+8x;-5.5
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12.2.2 Optimal statistical classifier

X3 FIGURE 12.11
Two simple
pattern classes
and their Baves
decision boundary

(0,0, 1) (shown shaded).
(0.1, 1)

(1,0, 1)

(1,0,0)

£ iy

X i € ug
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12.2.2 Optimal statistical classifier

« Example Multi-spectral scanner response to
selected wavelength bands: 0.40~0.44 microns
(violet), 0.58~0.62 microns (green), 0.66~072
microns (red), 0.80~1.00 microns (infrared).
Every point in the ground 1s represented by 4-
element pattern vector as X=[x,, x,, X3, X,]



FIGURE 12.12
Formation of a
paltern vector
from registered
pixels of four
digital images
oenerated by a
multispectral
scanner.
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12.2.2 Optimal statistical classifier

FE
FHE
FRE

Spectral band 4

Spectral band 3

Spectral band 2

Spectral band 1
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ab

FIGURE 12.13 (a) Multispectral image. {b) Printout of machine classification results using a Bayes classifier. (Courtesy of the Lab-

oratory for Applications of Remote Sensing, Purdue University.)
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12.2.3 Neural Networks

The patterns used to estimate the parameters
(mean and covariance of each class) are the
training patterns, or training set

The process by which a training set 1s used to
obtain the decision function 1is called learning or
training.

The statistical properties of pattern classes in a

problem often are unknown or cannot be
estimated

Solution: neural networks
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12.2.3 Neural Networks

Non-linear computing elements organized as a network
are believed to be similar to the neurons in the brain
called neural network, neurocomputers, parallel
distribution model (PDP) etc.

Interest in neural networks dated back to 1940s

During 1950~1960, learning machine such as
nerceptron 1s proposed by Rosenblatt.

1969, Minsky and Papert discouraged the perceptron-
like machine.

1986, Rumelheart, Hinto and Willams, dealing with the
developement of multi-layer perceptrons
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12.2.3 Neural Networks

* Perceptron of two pattern classes (Fig. 12.14)

Rafael €. Gonzalez

* The response of the basic devise 1s based on a weighted
sum of its inputs as d(X)=2. wx+w, ;.

 Itisa linear decision function with respect to a pattern
vectors. The coefficient w, i=1,...n, n+1, are weights.

* The function that maps the output of summation to the
output of the device 1s called the activation function.

* When d(X)>0 the threshold element causes the output of
the perceptron to be +1, indicating X belonging to ;.
When d(X)<0 indicating the other case.

* The decision boundary is d(X)=%;, wx+w ., =0
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a
b
FIGURE 12.14

Two equivalent
representations of
the perceptron
model for two
patlern classes.

X
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12.2.3 Neural Networks

1

X3 n
d(x) = E Wix; + Wiy
Pattern -
veclors 4 +1 if dix) =0
X
.'r‘:'. =
=1 il dix)<10

Pattern
veclors 4
X

Activation element

.
n
10 3wy = — 1w,
i=1
Ui —a- ) =
rn
"
=1 if 2w < = wpyy
=1

Activation element
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12.2.3 Neural Networks

* Another formulation 1s to augments the pattern
vectors by appending an additional (n+1/)st
element, which 1s always equal to 1.

* An argument pattern vector y 1s created from a
pattern vector x by letting y,=x, and y _, =1.

 The decision function becomes
d(y)=%, wy;
where Y=(y,, y5......,, 1 )T 1S an argument pattern
vecltor.
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12.2.3 Neural Networks

Training Algorithms —linearly separable case

For two training sets belonging to pattern classes o,
and o, . Let w(1) be the mitial weight vector chosen
arbitrarily.

At the kth iterative step, if y(k)e o, and w (k)y(k)<0
replace w(k) by w(k+1) =w(k) +cy(k), where c 1s a
positive correction number.

Conversely, if y(k)ew, and WT(k)y(k)ZO, replace w(k)
by w(k+1) =w(k) - cy(k).

Otherwise leave w(k) unchanged w(k+1)= w(k)

The algorithm is referred as fixed increment

correction rule. It converges if two training pattern
sets are linearly separable,
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12.2.3 Neural Networks

0
° Example- Consider two w Dy =[0 0 0]-|0|=0
training sets (Fig. 12.15) 1
* {(0,0,1),(0,1,1)} em,, 0
{(1,0,1), (1,1,1)} ew, W2)=w()+y)=10
e Let c=1 and w(1)=0. 1 o0
representing the patterns in Wy =0 0 1]|1|=1
the order of sequence as 1y
W(3)=w(2) o
(1 1] 1
w 3y@)=[0 0 1]]0[=1 w@=w@-y3)=| 0| W@HyH=[-1 0 0]-[ }1
1 0 :

o S wS)w(4)
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12.2.3 Neural Networks

Example (continued)

A solution 1s obtained only when the algorithm
yields a complete error-free iteration through
all training patterns

Convergence 1s achieved at k=14, yield the
solution weight vector w(14)=(-2, 0, 1)".

The corresponding decision function 1s
d(y)=-2y,+1 and d(X)=-2x +1.



igital
Image
Processing

ab

FIGURE 12.15
(a) Patterns
belonging to two
classes.

(b) Decision
boundary
determined by
training.
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12.2.3 Neural Networks
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12.2.3 Neural Networks

Non-separable classes (non-linear case) — Least-mean
square (LMS) datarule

Consider iteration function J(W)=Ya(r-w'"y)?

where r 1s the desired response (i.e., I=+1, yew, and r=-
lyen,)

The task of LMS data rule 1s to adjust w incrementally in

the direction of negative gradient of J(W) 1n order to
minimize J(W) which occurs when r=w'y

After the k iteration step, the w(k) 1s updated as

oJ (W)
w(k +1) = w(k) — a[ }
8W wW=wW (k)



Image Comm. Lab EE/NTHU 40

12.2.3 Neural Networks

o From J(W)="%(r—W'y)? we have
w(k +1) = (k) — alr(k) —w” (k)y (k) ly (k)

or W(k+1)=w(k)+ a e(k)y(k), and e(k)=r(k)-w"(k)y(k)
 If we change w(k) to w(k+1) but leave the pattern the
same, the error becomes e(k) = r(k)-w' (k+1)y(k).

* So Ae(k)=[w' (k+1) - W' (k)]y(k)
= — ae(yT(yk)= - ael) | yk) |’
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12.2.3 Neural Networks

Rafael €. Gonzalez

 Multilayer feedforward neural networks (fig. 12.14)

« Each neuron has the same form as the perceptron model
except that the hard-limiting activation function has been
replaced by a soft-limiting “sigmoid” function which has
the necessary differentiability as

1
h.(l,)= —
A 1+e (1,+6,)/6,

where [, j=1,2,...N,, is the input to the activation
element of each node in layer J, 6’j 1s an offset, and Qj
control the shape of the sigmoid function.

The sigmoid function 1s plotted in fig. 12.17.
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12.2.3 Neural Networks

ZN

e
b

FIGURE 12.16 Multilaver feedforward neural network model. The blowup shows the basic structure of each neuron element throughout the network.
The offset, #,,is treated as just another weight.
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12.2.3 Neural Networ ks

0 = h(I) FIGURE 12.17 The
sigmoidal
activation
function of

Eq. (12.2-47).
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12.2.3 Neural Networks

From fig. 12,17, the offset 6 ; is analog to the weight
w;,; In perceptron.

In fig. 12.16, the 1nput to node 1n any layer is the
weighted sum of the output from previous layer.

Let layer K preceding layer J gives the mput to the
activation element of each node in layer J, denoted as

[, as N
I, = ZijOk
k=1

where NV, or N, 1s the number of nodes 1n layer J or K
Then output of layer K are O,=h,(1,), k=1,...N,.
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12.2.3 Neural Networks

* Every node 1n layer J, but each individual input can be
weighted differently, as w,, and w,, for k=1,2,...N, are

the weights on the inputs to the 1st and 2nd nodes

1
h j(] j) — Nk
~(D w30, +6,)/6,
l+e *
* The main problem 1n training a multilayer network

lies 1n adjusting the weights in the so-called hidden
layers.
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12.2.3 Neural Networks

Training by back propagation
Begin from the output layer, the total square error between the
desired output r, and actual output O, of nodes 1n layer Q 1s

Z(r -0 )

Similar to delta rule the tra1n1ng rule adjust the weights in each
layer in a way that seeks a minimum of an error function, 1.e.,

oF
Aw =-a—2

v ow
. . qap
Using the chain rule, we have

0E, _0E, oI, _0E,

ow, ol ow, Ol P

q
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12.2.3 Neural Networks

Therefore, Aw, = - @ (0Ey/0l )0,= a 0,0,
where o, = ~ (0E /0l )
* From chain rule, we have o,= - (0E /00 )(00 /0l )
where OE /00, = - (r, - O,)
and 000l =0lh(1))/ol,=h’(I).
* Finally, we have 0 = (r, -Oy) 2’ (/)
* So, Aw,_,=a0,0,=a (r, ~Oy) h’ (1) O,
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12.2.3 Neural Networks

* Now considering layer P, preceeding in the same manner
as aboveas Aw,= @ 0 O=a (r, -0, h’ (1) O,
 We have similar error terms, i.e.,
0,=-(0E,/0l) = - (0E,/00,)(00,/0l)
= - (0E,/00,)h’ (1,)

* The term (GEP/GO ) does not produce r,, but 1 IS expressed
< OF, o
e ST, S o

p q=1

— Layer J [~ Layer P [ Layer Q
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12.2.3 Neural Networks

* The parameter 6, is 6, = h’ (1)) Z, 6, w,,
«  After the error term and weights have been computed

for layer P, these quantities can be used to compute the
error and weights for the layer preceding layer P.

Summary: for any layers K and J, where K precedes J.

1. Computer the weights w;,, which modity the
connections between these two layers, by Aw; =00,0;.

. It J1s the output layer, 0, = (r; - O)) h’ (1))
3. IfJis the iternal layer 0, = 2',(1) X, 0, w;, for
Jj=1,2,..N,

— Layer K| Layer J [—|Layer P
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12.2.3 Neural Networks

a

b

FIGURE 12.18

(a) Reference
shapes and

(b) typical noisy
shapes used in
training the
neural network of

Fig. 12.19.

(Courtesy of Dr. Shape 1 Shape 2 Shape 3 Shape 4
Lalit Gupta, ECE

Department,

Southern llinois
University.) I I

Shape 1 Shape 2 Shape 3 Shape 4
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12.2.3 Neural Networks

. FIGURE 12.19
; Weights I'hree-laver
Wi neural network
used to recognize

B A N / "eig . ‘Courtesy of Dr.
\“l“%&f \3“?{/
e A iﬁﬁ'f.ﬁ \\\" -y Southern Ilinois
‘)‘ _
v

}QMD"\“ IR “ w/

X4 %ﬁg;%@%.‘%;é%%@%.%‘}gﬁ?. Shape 2

et ST YRR AN

SO ZREN - A

R

A\
3

shape 3

Shape 4

Layer A
N, =48
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12.2.3 Neural Networks

FIGURE 12.20 0.25 -
Performance of ’
the neural .
network as a ]
function of noise 0.20 3
level. (Courtesy of - .
Dr. Lalit Gupta. 2 ]
ECE Department, 3 .
Sm}lherp [llinois Z 0.15 3
University.) 3 ]
s .
£ 010
S ]
o .
0.05
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0.00 0.20 0.40 0.60 0.80

Test noise level (R)
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12.2.3 Neural Networks

FIGURE 12.21

[mprovement in
R, =04 N =10 performance for
R, = 04 by
increasing the
number of
training patterns
(the curve for
R, = 0.3 is shown
for reference).
(Courtesy ol Dr.
Lalit Gupta, ECE
Department.
Southern llinois
University.)

T T T 1T T T 171 | T T T T T T TT1 | T 1T T T T T 171 | rTT T T T T T°T1 |
0.00 0.20 0.40 0.60 0.80
Test noise level (R)
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12.2.3 Neural Networks

x & |
| m@‘<

B b

| g*]

FIGURE 12.22 (a) A two-input, two-layer, feedforward neural network. (b) and (c) Ex-
amples of decision boundaries that can be implemented with this network.
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12.2.3 Neural Networks

limited by the
number of
nodes)

©
©

P

Network Type of Solution to Classes with Most general
structure decision region exclusive-OR meshed regions decision surface
problem shapes
single layer '
Single @
hyperplane
X
Two layers
Open or @ 4
closed
convex
regions @
Three layers
Arbitrary @ O
(complexity

FIGURE 12.23
Types of decision
regions that can
be formed by
single- and
multilayer
feed-forward
networks with
one and two
lavers of hidden
units and two
inputs. (Lippman)
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12.3 Structural Methods

Structural relationships inherent in a pattern’s
shape.

12.3.1 Matching Shape Numbers
12.3.2 String Matching
12.3.3 Syntactic Recognition of Strings
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12.3.1 Matching Shape numbers

« Referto 11.2.2, the degree of similarity, &, between two region
boundaries (shapes) is defined as the largest order for which
their shape numbers still coincide.

* For example, let a and b denote shape numbers of closed
boundaries represented by 4-directional chain codes. These
two shapes have a degree of similarity £ 1f

si(a)=s;(b) for j=4, 6, §,...k.
si(a)#s;(b) for j=k+2, k+4, ...

where s indicates shape number and the subscript indicates
order.

* The distance between two shapes a and b 1s defined as the
inverse of their degree of similarity, i.e., D(a, b)=1/k
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12.3.1 Matching Shape numbers

* The distance satisty the following properties:
— D(a, b)>0
— D(a, b)=0if a=b
— D(a, b)<max|[D(a, b), D(b, ¢)]

« Example. Find the closest match between the

give shape f and the other five shapes (a~e) as
shown 1n Fig. 12.24
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12.3.1 Matching Shape numbers

a
b ¢
FIGURE 12.24
(a) Shapes.
(b) Hypothetical

similarity tree.
(c) Similarity

matrix. (Bribiesca
and Guzman.)

b = 8 8 10 B8
¢ = 8§ 8§ 12
d = 8 8
e == 8
f oo
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12.3.2 String Matching

Suppose two regions a and b are coded into two strings as
a,a,...a, and b,b,,...b, , respectively.
Let o represent the number of matches between the two strings,
the number of symbols that do not match is

=max(|al, |b]) - a
where |a|, 1s the length of symbol a, 5=0 if @ and b are 1dentical.
The measurement of similarity between a and b 1s the ratio
R=alp
Because matching 1s done symbol by symbol, the starting point on
each boundary i1s important.

Example 12.25(a) and (b) show sample boundaries of two objects,
12.25(c) and (d) show the polygonal approximations. Strings are
formed from the polygon by computing the interior angle 6
between segments as each polygon was traversed clockwise.
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12.3.2 String Matching

ab

c d
— e f
- e

FIGURE 12.25 (a)

and (b) Sample
boundaries of two
different object
classes; (¢) and

(d) their
corresponding
polygonal
approximations;
{e)—(g) tabulations

R 1o b e 1d is 0f | zs 3n 2. 34 35 i | OfR. (Szeand
Yang.)

l.a = 2 =~

Lb| 160 = 2b| 335 -

le| 96 263 - 2¢| 48 58 =

ld| S1 81 103 = 2d| 36 42 193 =

le| 47 72 103 142 - 2e| 28 33 92 183 =

£ 47 72 103 84 237 = 2f| 26 30 77 135 270 -

Angels are coded into

2a| 124 150 132 147 155 148

onc Of Cight possible 2b| 1.18 143 132 147 155 148
. 2¢| 102 118 119 132 139 148
SymbOIS COITESp ondlng 2d| 102 118 119 132 129 140

to 450 increments, 2e| 093 107 108 119 124 125

2f( 089 1.02 1.02 124 122 118
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12.3.3 Syntactic Recognition of Strings

* Syntactic pattern recognition: (1) a set of pattern

primitives; (2) a set of rules (grammar) that governs
their interconnection; (3) recognizer (automaton)
whose structure is determined by the set of rules in
the grammar.

« String Grammar is defined as 4-tuple:
G=(N, 2, P, S)
where
N 1s a finite set of variable called non-terminals.
2/ 1s a finite set of constants called terminals
P 1s a set of rewritting rules called productions
S 1n N 1s callled starting symbol
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12.3.3 Syntactic Recognition of strings

a
b
C

FIGURE 12.26
(a) Object
represented by its
(pruned)
skeleton.
(b) Primitives.
(¢) Structure
cenerated by

b using a regular
L L) . string grammar.
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12.3.3 Syntactic Recognition of strings

TABLE 12.1 . . :
Example of Production Semantic Information

Ak o |
semantic S — aA Connections to a are made only at the dot. The direction of a,
information denoted #, is given by the direction of the perpendicular
attached to bisector of the line joining the end points of the two undotted
production rules. segments. The line segments are 3 cm each.

A — bA Connections to b are made only at the dots. No multiple

connections are allowed. The direction of & must be the same
as the direction of a. The length of b is .25 cm. This production
cannot be applied more than 10 times,

A — bB The direction of g and b must be the same. Connections must be
simple and made only at the dots.
B—c¢ The direction of ¢ and @ must be the same. Connections must be

simple and made only at the dots,
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12.3.3 Syntactic Recognition of strings

b FIGURE 12.27 A

@ - finite automaton.
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d

b

FIGURE 12.28

(a) An object and
(b) primitives
used for
representing the
skeleton by
means of a tree
grammar.
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d d
/N / N\
a c [ a c
\ \
b [X] D
d [S] d
[X] a/ [X]c [X] a/[X}c

ab

cd

FIGURE 12.29
Processing stages
of a frontier-to-
root tree
automaton:

(a) Input tree.
(b) State
assignment o
frontier nodes.
(¢) State
assignment o
intermediate
nodes. (d) State
assignment o
root node.
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FIGURE 12.30 A
bubble chamber
photograph. (Fu
and Bhargava.)
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ab

FIGURE 12.31

(a) Coded event
from Fig. 12.30.

(b) Corresponding
tree representation.
(Fuand Bhargava.)

a—Rh—L—Lh—h—a—&

=2—a—2—=2 :h&
o —
T
— o —

22— —a—a—5—=5

22—y —a—s—2—5—>5
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FIGURE 12.32
State diagram for
the finite
automaton
inferred from the
sample set

R* = {a, ab.
abb}.
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FIGURE 12.33 X
Relationship L[A¢(R",0)]
between LR 1)

L[A/(R", k)] and
k. The value of £,
is such that

k,, = (length of
the longest string
in RY).

L[A{(R*. k)]

.
»

L[Aj'(R+~ ku.l)]

<




= Image Comm. Lab EE/NTHU 72
Processing ‘

Chapter 12
Object Recognition

FIGURE 12.34 State diagram for the automaton A,(R", 1) inferred from the sample
set R" = {caaab, bbaab, caab, bbab. cab, bbb. cb}.
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