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% Chapter 3
@l mage Enhancement in the Spatial Domain

* Image Enhancement: process an image to
make It more suitable for certain specific
application.

—In gpatial domain
—In frequency domain (chapter 4)



3.1 Background

e Spatial domain process on image can be
described as
9%, y) = T[f(x, y)]
Where f(X,y) I1sthe input image, g(Xx,y) isthe
output image, T IS an operator

T operates on the neighbors of (X, y) (asquare or
rectangular sub-image centered at (x,y) to yield
the output g(X, y).
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3.1 Background

FIGURE 3.1 A Origin
3 X3 ) -
neighborhood
about a point | (x,¥)
(x, ¥) in an image. i

Image f{x. v)




3.1 Background

e Thesmplest form of T isthe neighborhood is of
size 1x1. g dependsonthevalueof f at (X, y)
which isagray level transformation as

s=T(r)
Wherer and s are the gray-level of f(x, y) and g(x, y) at
any point (X, y).
Fig. 3.2(a) provides Contrast stretching
Fig. 3.2(b) provides Thresholding.
Enhancement of any point depend on that point only
- Point processing
» Larger neighborhood provides more flexibility
— Mask processing or filtering
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3.1 Background

s =T(r) § =E"(r]| a b
——————————————————— FIGURE 3.2 Giray-

level
transformation
functions for
contrast
enhancement.

Dark

Dark

Ly i
Dark s+—— Light Dark -+—— Light



Image Comm. Lab EE/NTHU ©

3.2 Basic gray level transformations

e Three basic functions used in image
enhancement

— Linear (negative and identity transformation)
S=L-1-r

— Logarithmic (log and inverse |og)
s=clog(1l+r)

— Power law (nth power and nth root transformation)
s=cr” or s=c(r+¢)’
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3.2 Basic gray level transformations

FIGURE 3.3 Some
basic gray-level
transformation
functions used for
image
enhancement.
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Input gray level. r



Image

igital _' Image Comm. Lab EE/NTHU 8

3.2 Basic gray level transformations

a b

FIGURE 3.4

(a) Original
digital
mammaogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems. )
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3.2 Basic gray level transformations

L

FIGURE 3.5

(a) Fourier
spectrum,

(b) Result of
applving the log
transformation
given in

Eq. (3.2-2) with
c=1.
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3.2 Basic gray level transformations

FIGURE 3.6 Plots

L—-1 I
of the equation
v = 0.04 5. = C.r'. for -
various values of
v = 0.10 y(c = 1linall
- cases).
3L/ y = 0.20 H
. y = 0.40
F
3 = 0.67
';-.
S L/21 _ ~
=
= y =15
=
) (=29
Lja - =50 g
= 10.0
y = 25.0
0 | | | _/
0 L/4 L/2 3L /4 L-1

[nput gray level. r
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3.2 Basic gray level transformations

* vy correction

— The CRT devices have an intensity-to-voltage
response which is a power function.

—y rangesfrom 1.8t0 2.5

— Without y correction, the monitor output will
become darker than the original input
— Prepare the input image before inputting It into the
CRT monitor by performing the transforming
S=r 1y — 25— o4

voltage Intensity
S: r 1/'Y >

\/ correction CRT: power function

11
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3.2 Basic gray level transformations

ab
cd

FIGURE 3.7

(a) Linear-wedge
gray-scale image.
(b) Response of
monitor to linear
wedge.

(¢) Gamma-
corrected wedge.
(d) Output of
monitor.

[mage as viewed on monitor

[mage as viewed on monitor
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FIGURE 3.8

(a) Magnetic
resonance (MR)
image of a
fractured human
spine.

(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with
¢ = 1and

v = (.6,0.4, and
0.3, respectively.
{Original image
for this example
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)
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e

FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ = 1and

v = 3.0.40. and
3.0, respectively.
(Original image
for this example
courtesy of
NASA.)
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3.2 Basic gray level transformations

e Piecewise-Linear Transformation Functions
— Contrast stretching
— Gray-level dlicing
— Bit-plane slicing
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ab
cd

FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast

(ra. 52)

3L/

I{r)

Ouput gray level. s
b~
3
|

L/l

(r1.51) stretching.
0 | | | (d) Result of
0 L/4 L2 3LA thresholding.

(Original image
courtesy of

Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)

Input gray level. r
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ab

¢ d

FIGURE 3.11

(a) This
transformation
highlights range
| A, B] of gray
levels and reduces
all others to a
constant level.
(b) This
transformation
highlights range
| A, B] but
preserves all
other levels.

(c) An image.
(d) Result of
using the
transformation
in (a).



igital Image Comm. Lab EE/NTHU 18

Image 3
Processing ARl

3.2 Basic gray level transformations

One 8-bit byte FIGURE 3.12

. Bil-plane 7. Bit-plane
(most significant) _ : :
| C
= representation ol
an 8-bit image.
.
e
e
i
o
e
.

Bit-plane 0
(least significant)
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3.2 Basic gray level transformations

FIGURE 3.13 An 8-bit fractal image. (A fractal is an image generated from mathematical
expressions). (Courtesy of Ms. Melissa D. Binde, Swarthmore College, Swarthmore, PA.)
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3.2 Basic gray level transformations

FIGURE 3.14 'The eight bit planes of the image in Fig. 3.13. The number at the bottom,
right of each image identifies the bit plane.



3.3 Histogram Processing

e The histogram of adigital image with gray-
levelsin therange [0, L-1] isadiscrete
function h(r,)=n, wherer, isthe kth level
and n, i1sthe number of pixels having the
gray-level r,.

* A normalized histogram h(r,)=n/n, nisthe
total number of pixelsinthe image.

21
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Dark image

3.3 Histogram Processing

|.||||.|;|..... L

Bright image

a b

FIGURE 3.13 Tour basic image types: dark, light. Iow contrast, high contrast, and their cor-
responding histograms, {Original image courlesy of Dr. Roger Heady, Reszarch School
of Biological Sciences, Australian National University, Canberra, Australia. )

Low-contrast image

High-contrast image




Image Comm. Lab EE/NTHU

3.3 Histogram Processing

e Histogram equalization isto find atransformation
s=T(r) O=<r<1 that satisfying the following
conditions:

— T(r) Issingle-valued and monotonically increasing in the
interval O<r<1

— O<T(r)<1 for O<r<1

— The T(r) issingle-valued so that its inverse function exists.

— Theinverse transform from stor is denoted as
r=T-1(sg)=Q(s), 0<<1
The inverse function may not be single valued, s=Q1(r)
may not exist

23
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3.3 Histogram Processing

5 FIGURE 3.16 A
4 oray-level
transformation

] function that is
both single valued
and

) nically
5, = T(r,) monotonically
Increasing.




3.3 Histogram Processing

* The gray-level isan image may be viewed as a
random variable, so we let p.(r) and pJ(s) denote the

probability density function of random variablesr
and s.

o |f p(r) and T(r) are known and T-(s) issingle-
valued and monotonically increased function then
P«(s)= p,(r)|dr/as]
o |f we assume the inverse transformation function as
s=T(1)=], p, (W)cw
where w is adummy variable,

s=T(r) isacumulative distribution function (CDF) of the
random variabler.

25
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3.3 Histogram Processing

e Given transformation T(r), we may find the
p(s) as
ds/dr = dT(r)/dr=d[ | b, (W)dw]/dr = p,(r)
and then pJs)= p,(r)[dr/ds|=1 for 0<s<1
* pJS) Isauniform prob. distribution

* T(r) dependson p,(r)
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3.3 Histogram Processing

e [or discrete case
p(r)=nJ/n for k=0,1....L-1
e Thediscrete version of the transfkormatl on function is

S=T(rY = Zp(r) ZJ

n
The above mapping is called hist gram equalization

e Theinverse transform
n=T1s) fork=0,1,...L-1

It existsif none of the levels, r,, k=0,1,...L-1 are
missing from the input images
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Bbc

FIGURE 3.17 (a) Images from Fig. ? I'i [h] Hesu]la r.‘.uf hul-::ngr;lm equalization. {c) Clor-
responding histograms,
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Image

3.3 Histogram Processing-histogram egualization

FIGURE 3.18 1.00
Transformation

functions (1)

through (4) were

obtained from the

histograms of the 0.75
images in

Fig.3.17(a), using

Eq. (3.3-8).

0.50

0.25
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3.3 Histogram Processing-histogram matching

e Given the input image with p.(r), and the specific
output image with p,(2), find the transfer function
between ther and z

o Lets=T(r)= fo p, (w)dw
where w isadummy variable

» Define arandom variable z with the property
G(@= [ p,®dt =s
wheret isadummy variable

* From the above equations G(z)=T(r) we have
z=G1(s)=GT(r)]
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3.3 Histogram Processing-histogram matching

e For discrete case:
 From given hlstogram pr(rk) k=0, 1,....L-1

SET(r)= Z p(r;) = Z -
 From given hlstogram pz(z), 1=0, 1,...L-1

vi.=G(z,)= sz(z) =S,
 Finally, we have G(z)=T(r,)
and  z=Gsg)=G*[T(r,)]

Notes. r—-S z-v Sv,hencer-ssv-z
T G T G



D.
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ol 3.3 Histogram Processing-histogram matching

Obtain the histogram of each given image

Pre-compute a mapped s, for eachr,, i.e., S=T(r,)

Obtain the transformation function G from given p(z) using
Vii=G(z) = Z P.(z)= S

Precompute z, for each value s, using iterative scheme as

follows:

Tofind z = G(s) = G(v,), however, it may not exist such z,.
Since we are dealing with integer, we find the closest z,. we
can get to satisfy G(z)—s =0
For each pixel in the original image, if the value of that pixel

Isr,, map this valueto its corresponding levels s,; then map
level s, into the final level z,.



FIGURE 3.19

(a) Graphical
interpretation of
mapping from r,
to s, via T'(r).

(b) Mapping of z,
Lo 1S
corresponding
value v, via G(z2).
(c) Inverse
mapping from s,
to its
corresponding
value of z,.
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3.3 Histogram Processing-histogram matching

o
R

3.50

1.75

Number of pixels { % 10%)

(] | | |
() H4 128 192

Gray level

[=d
ran
.

a b

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA'S Mars Global
Surveyor. (b) Histogram. (Original image courtesy of NASA.)
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3.3 Histogram Processing-histogram matching

255 I I a b
. C

v 19 7/ FIGURE 3.21

= (a) Transformation
) .

-, function for

= :

£ 128 histogram

5 equalization.

& (b) Histogram-
= 64 . .

o equalized image

(note the washed-
0 | | | oul appearance ).
0 64 128 192 (c) Histogram
Input gray levels of (b).
7.00 | | I

=

<7 h(s)
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3.3 Histogram Processing-histogram matching

a c 7.00
b —_—
d =)
% 525
FIGURE 3.22 z
{(a) Specified =
histogram. 2 350
(b) Curve (1) is 5
from Eq. (3.3-14), 5 . e
using 1hlc g 175
histogram in (a); Z
curve (2) was 0
obtained using 0 64 128 192
the iterative Gray level
procedure in 055
Eq. (3.3-17). o

<

(c) Enhanced
image using
mappings from
curve (2).

(d) Histogram
of (c).

192

128

64

Output gray levels

1. I‘-LS VG—)Z S=V % 64 128 mzzk 255

[nput gray levels

2. Curvel:v,=G(z)=5s "
% 5251 —
3. Curve2: Z,=G(s) $yul |
E-.E 1751 h(z k) —
z 0 | it |
0 64 128 192 255

Gray level
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3.3.3 Local Enhancement

« Transformation function based on gray-level

distribution in the neighborhood of every pixel in
the image.

« At each |location, the histogram of pointsin the
nelghborhood (or inside aregion) is computed and
histogram equalization is applied.

« Enhancement applied for overlapped regionsis
better than non-overlapped regions.

1 | Over- _ Non-

lapped Overlapped
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igital
Image
Processing

3.3.3 Histogram Processing-local enhancement

Devise transformation functions based on the gray-level histogram
distribution in the neighborhood of every pixel in the image.

T

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (¢) Result of local histogram
equalization using a 7 X 7 neighborhood about each pixel.
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3.3.4 Histogram Processing-Image Enhancement
Using Histogram Statistics

* Letp(r;) bean estimate of the probability of
occurrence of gray-level r..

e Thenth moment of r about It mean IS
()= Z(r m)" p(r,)

. wheremisthe mean value of r
m= fri p(r.)

e The secic:)ong moment IS given by
Ho(r)= gm -m)? p(r,)
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Using Histogram Statistics

 Let S denote aneighborhood of specified size
centered at (X, y), the mean value ms,, of the pixel

LARSWES
ms(y = S’éxyrs,t p(rs,t)

whererg, isthegray level at (s, 1)

The gray level variance s

Gsxy: Z(rs,t o mSW)Z p(rs,y)
steS,,
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3.3.4 Histogram Processing-lmage Enhancement
Using Histogram Statistics

 Example SEM image (Fig. 3.24): To enhancethe
dark areas while leaving the light area as unchanged.
e Consider the pixel at (x, y) as acandidate for
enhancement by measuring whether an areais
relatively light or dark by comparing the local average
gray level mg to the global mean M.
Mg, < Ko Mg where 0< K, <1
and thelocal standard deviation ag(yto the global
standard deviation o .
o5, <Kyog where K, >0.
Set K, >1for light area and K, <1 for dark area.
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Using Histogram Statistics

o Finally, we set the lower limit on the local standard
deviation 05,8 Ko< gy with K< K,
Summary

e Theorigina image f(x, y) and enhanced image g(x, y).

g(X, y)= EAf(X, y) If Mg, < Ko Mg AND
K106 < 05y < K, 0g WithK; < K,
g(x, y)=f(X, y) otherwise
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Using Hlstogram Statistics

FIGURE 3.24 SEM
image of a
tungsten filament
and support,
magnified
approximatelv
1302 (Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Geological
Sciences,
University of
Oregon, Eugene).
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3.3.4 Histogram Processing-lmage Enhancement

f Using Histogram Statistics

il m3<y Ef(X,y)

FIGURE 3.25 (a) Image formed from all local means obtained from Fig. 3.24 using Eq. (3.3-21). (b) Image
formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (¢) Image formed from
all multiplication constants used to produce the enhanced image shown in Fig. 3.26.
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3.3.4 Histogram Processing-lmage Enhancement
Using Histogram Statistics

FIGURE 3.26
Enhanced SEM
image. Compare
with Fig. 3.24. Note
in particular the
enhanced area on
the right side of
the image.
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5 . ‘H:d ) . . . .
. ;‘b 3.4 Enhancement using Arithmetic/Logic Operation

o Operations on Pixel-by-pixel basis

 AND and OR operations are used for masking
— Selecting subimages in an image

« Subtraction and Addition are used for image
enhancement
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abc
de f

FIGURE 3.27

(a) Original
image. (b) AND
image mask.

(c) Result of the
AND operation
on images (a) and
(b). (d) Original
image. (e) OR
image mask.

(f) Result of
operation OR on
images (d) and
(e).
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xg," 3.4.1 Enhancement using Arithmetic Operation —
- Image subtraction

* g(xY) = 1(x, y)—n(x, y)
« Higher-order bit plane — visual relevant
detall

e Lower-order bit plane — fine detail or
|mper ceptible detall



ab

cd

FIGURE 3.28

(a) Original
fractal image.
{b) Result of
setting the four
lower-order bit
planes to zero.
{c) Difference
between (a) and
(b).

{d) Histogram-
equalized
difference image.
{Original image
courtesy of Ms.

Melissa D. Binde.

Swarthmore
College,

Swarthmore, PA).
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3.4.1 Enhancement using Arithmetic Operation
— lmage subtraction
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3.4.1 Enhancement using Arithmetic Operation
— Image subtraction

 Example: Mask mode radiograph
»N(X, y) iIsamask, or an X- ray image before
Injection
»>f(X, y) image after injection a contrast medium
Into bloodstream.

»>f(x,y)—h(x,y) enhanced detall
* Image scaling to interval of [0, 255]
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3.4.1 Enhancement using Arithmetic Operation

— image subtraction

f(x, y)—h(x,y)

a b

FIGURE 3.29
Enhancement by
image subtraction.
(a) Mask image.
(b) An image
(taken after
injection of a
contrast medium
into the
bloodstream) with
mask subtracted
out.

51
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Image 3
Prme K n Ay
rroCessing I—r

BB 4.2 Enhancement using Arithmetic Operation
' — image averaging

» Noisy image g(x,y) is g(x, Y)=f(x, y)+ n(x, y)

g(x,y) =%Z 6, (%, )

E{g(x )} = f(xY)

2 1 2
O = —O0 n(X,y)
a(x,y) K

e AsK Increases, noise 0_2 decreases

g(x,y)
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3.4.2 Enhancement using Arithmetic Operation
— image averaging

FIGURE 3.30 {a) Image of Galaxy Pair NGC 3314. (b} Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)—{f) Results of av-
eraging K = 816,64, and 128 noisy images. {Original image courtesy of NASA.)
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3.4.2 Enhancement using Arithmetic Operation
— image averaging

ab

FIGURE 3.31
{a) From top to
bottom:
Difference images
between
- Fig.3.30{a) and
the four imagesin
- Figs. 3.30(c)
through (f),
il | || | - respectively.
T . : (b) Corresponding
histograms.

.
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3.5 Spatial Filtering

« Spatial filtering: using afilter or kernel (i.e., a
subimage w(X, y)) to operate on the image f(x,y).

 Filtering can also be applied in frequency domain
(Chapter 4)
 Theresponse R of the pixel at (X, y) after filtering is
(Fig. 3.32 and 3.33)
R=w(-1, -1)f(x-1, y-1) + w(-1, 0)f(x-1, y) +.... +w(0O,
0)f(x, y)+....+w(1, O)f(x+ 1, y)+w(1, 1) f(x+1, y+1)
 The mask is centered at location (X, y)
 Mask sizeisodd size (3x3, 5x5, 7x7,...)

55
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3.5 Spatial Filtering

mage origin

Image fix, v)

an[o, oj

Mazk cocfficients, showing
coordinate arrangement

Pixals of imaga
soction under mask

FIGURE 3.32 The
mechanics of
spatial filtering.
The magnified
drawing shows a
3 = 3 mask and
the image section
directlv under it
the image section
is shown
displaced out
from under the
mask for ease of
readability.

56
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3.5 Spatial Filtering

FIGURE 3.33
Another 1 w, W, Wy
representation of
a general 3 X 3
spatial filter mask.
wy Wy Wy
W Wy Wy

9
R=WzZ +...... Wy Zg = D W Z
=1



3.6 Smoothing Spatial Filters

1 1 I I y 1
Lol 1 1 Ll 2 A 2
9 16

1 1 I I y 1

Weighted Averaging
a b
D> wst) f(x+s,y+t)
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Image 3
Processing ARl

3 b

FIGURE 3.34 Two
3 X 3 smoothing
(averaging) filter
masks. The
constant multipli
er in front of each
mask 1s equal to
the sum of the
values of its
coefficients, as s
required to
compute an
average.

g(x’ y) _ S=—as=-b —
> w(st)

S=—as=-
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3.5 Spatial Filtering

In general, linear filtering of an image f of size MxN with a
filter mask of sizemxnisgivenby ., ,

g(x,y) =D > w(st)f(x+s,y+t)
where the output image is g(x.y), a= (m-1)/2 and b= (n-1)/2,
x=0,....M-1 and y=0,...N-1
Linear filtering » convolution
Filter mask » convolution mask
When filter approach the border of the image

1. Limit the excursions of the center of the mask to be at a
distance no less than (n-1)/2 pixels from the border.

2. “Padding” the image by adding rows and columns of O’'s (or
other value)

3. “Padding” by replicating rows and columns.
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3.6 Smoothing Spatial Filters

aidl
I

aaaaaaad

.
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oumEl

.
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saaa02038

T
-

o F

oo

Lt ==n

Filter mask sizes: 3x3, 5x5,
Ox9, 15x15, 35x35.

FIGURE 3.35 (a) Original image, of size 500 > 500 pixels. (b)—{f) Results of smoothing
with square averaging filter masks of sizes n = 3,5,9,15, and 35, respectively. The black
squares at the top are of sizes 3, 5,9, 15,25, 35,45, and 55 pixels. respectively: their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 peints, in
increments of 2 points: the large letter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart: their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50 = 120 pixels.
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Image

3.6 Smoothing Spatial Filters

abc

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(c) Result of thresholding (b). {(Original image courtesy of NASA.)
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3.6.2 Smoothing Spatial Non-linear Filters

 Median Filter

— The response is based on ordering (ranking) the pixels
contained in the image area encompassed by the filter,
and then replacing the value of the center pixel with the
value determined by the ranking result.

e For certain noise, such as impulse noise or salt-

and-pepper noise, median filter is effective.

e Themedian, &, of aset of valuesis such that half
of the valuesin the set are less than or equal to<&,
and half are greater than or equal to<&,.
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;"'* 3.6.2 Smoothing Spatial Non-linear Filters

 Median filtering:

1. Sort the values of the target pixel and its
nelghboring pixelsto find the median.

2. Replace the target pixel with the median

For example, the median is the 5t largest value
of the 3x3 neighborhood and 15th largest value
In the 5x5 nelghborhood.
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3.6.2 Smoothing Spatial Non-linear Filters

e e

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi. Inc.)
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3.7 Sharpening Spatial Filters

* |mage averaging = low-pass filtering = image
plurring =spatial integration
* |Image sharpening = high-pass filtering = spatial
differentiation.
* |t enhances the edges and the other discontinuities
First order differenceis
Al x=1(x+1, y)-f(x, y)
I =f(x, y+1)-f(X, y)
Second order difference
Ffloxe=1(x+1, y)+1f(x-1, y)-2f(X)
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3 .7 Sharpening Spatial Filters

ab

i
FIGURE 3.38
(a) A simple
image. (b) 1-D

horizontal gray-
level profile along [
the center of the . |
image and i) |
including the i
isolated noise "xl
point. \
(c) Simplified \
profile (the points 1'1 | |
are joined by Y ||
dashed lines to \ || |
simplify \ } L J
interpretation). N !
=3 Isolated poi probee
§ 6 I-;‘.r— solated }"L)]ﬂl ]II
5 e-w i : :
:'"j A \“'t('_ Ramp fl "l Thin lim:_\‘ Step _\.‘:‘r
= f . !\ Flat segment /
& - " P A ]
~ “",_ I I'| "_. Iix !
1] a--—u -l p-o [
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)
]

Image slrip| 5 | 5 | 4

I .
First Derivative -1-1-1-1-10 0 6 60 0 0 1 2210 0 0 7 0 00
T e Y O I O
Second Derivative —1 0 0 0 0 1 0 6126 00 1 1411007700
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e L.a'd
X Y . )
"”’ 3.7.2 Second order derivative for enhancement

* |sotropic filter, rotational invariant — Laplacian
V=2l %+ Pl AR
VA=[f(x+ 1y)+f(x-1,y)+f(x, y+ 1)+f(X, y-1)]-4f(x.y)
Use the Laplacian for image enhancement

g(x,y)=f(x,y)—V2f(x,y) if the center coefficient of the
Laplacian mask is negative.

g(x,y)=f(x,y)+ VZ(x,y) if the center coefficient of the
Laplacian mask is positive
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Processing AWl

3.7.2 Second order derivative for enhancement

a b

0 1 0 1 1 1 ¢ d

FIGURE 3.39

(a) Filter mask
used to
implement the
digital Laplacian,
as defined in

0 1 0 | 1 1 Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
0 —1 0 -1 —1 —1 equation that
includes the
diagonal
neighbors. (¢) and
(d) Two other
implementations
of the Laplacian.




3.7.2 Second order derivative for enhancement

ab

cd

FIGURE 3.40

(a) Image of the
North Pole of the
moon.

(b) Laplacian-
filtered image.
(c) Laplacian
image scaled for
display purposes.
(d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of
NASA.)

69
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3.7.2 Second order derivative for enhancement

o Simplification:
a(x, y)=1(x, y)-[f(x+ Ly)+f(x-1, y)+1(x,
y+1)+1(x, y-D)]+4(X, y)
=5f(xy)- [f(x+Ly)+T(x-1Ly)+1(x, y+ 1)+1(X,
y-1)]
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3.7.2 Second order derivative for enhancement

(- Bl ]

FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b)

respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)
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3.7.2 Second order derivative for enhancement

* |mage enhancement
g(x,y)=f(x,y)—V2f(x,y) if the center of laplacian mask<0
g(x,y)=f(x,y)+ VA(x,y) if the center of laplacian mask>0
e Unsharp masking
fxy)=1(xy)-f* (x,y) where f*(x,y) Isthe blurred image
e High boost filtering
frp(XY)=AT(X,Y)-T* (X,Y)= (A-D)T(XY) + T (Xy)-T* (Xy)
=(A-Df(xy)+1(xy)
e Using Laplacian
fro(XY)=Af(Xy)—V2(x,y) if the center coefficient of the
Laplacian mask is negative.

fo(XY)=Af(X,y)+ V2(X,y) if the center coefficient of the
Laplacian mask is positive
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Image

3.7.2 Second order derivative for enhancement

ab

0 —1 0 | —1 -1 FIGURE 3.42 The
high-boost filtering
technique can be
implemented with
either one of these
masks, with A = 1.

—1 A+4 —1 —1 A+ B —1
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3.7.2 Second order derivative for enhancement

ab
cd

FIGURE 3.43

(a) Same as

Fig. 3.41(c), but
darker.

(a) Laplacian of
(a) computed with
the mask in

Fig. 3.42(b) using
A=0.

{c) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A = 1.(d)Same
as (c), but using
A=17
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3.7.3 First derivative for enhancement

+ VI(xY)=IG,, G=[dIX, AlH]
+ Vi(xy)=mag (V)=[Gz, G/]?
=[(Al)?, (Al K)> V=
e Robert operator
G= Al X=2y25 G=Al Y =257,
VE(XY)= [(Z9- Z5)+(Zg- 25 )? ]2
=2y - Zs|+]z5 - Z4]
Sobel operator

VI(X,Y)=|z;+ 225+ 25)-(Z,+ 22,+ Z,)
+|(Z3+224+2,)-(2,+22,+2,)|
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3.7.3 First derivative for enhancement

a
b ¢
de

FIGURE 3.44

A3 X 3region of
an image (the z's
are grav-level
values) and masks
used to compute
the gradient at
point labeled zs.
All masks
coellicients sum
LO Zero, as
expected of a
derivative
operator.

[
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3.7.3 First derivative for enhancement

ab
FIGURE 3.45

Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o'clock).

(b) Sobel
oradient.
(Original image
courtesy of

Mr. Pete Sites,
Perceptics
Corporation.)
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3.8 Combining Spatial Enhancement Methods

i )
cd

FIGURE 3.46

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a). (¢) Sharpened
image obtained
by adding (a) and
(b). (d) Sobel of
(a).
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3.8 Combining Spatial Enhancement Methods

[_
h

FIGURE 3.46
(Continued)

(e) Sobel image
smoothed with a
5 X 5averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).

(2) Sharpened
image obtained
by the sum of (a)
and (). (h) Final
result obtained by
applying a
power-law
transformation to
(¢). Compare (g2)
and (h) with (a).
(Original image
courtesy of G.E.
Medical Systems.)
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