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Chapter 5
Image Restoration

* Degraded digital image restoration
— Spatial domain processing
Additive noise
— Frequency domain

Blurred image
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5. 1 Model of Image degradation and restoration

FIGURE 5.1 A
model of the

Degradation

. ” Restoration SR
f{;t}",llZf} function filter(s) f(x.y) image o
H degradation/
) restoration
Noise Process.
n(x, ¥)
DEGRADATION RESTORATION

*g(x, Y)=h(x, y) #(x, y)+ n(X, y)
*G(u, V)=H(u, v)F(u, v)+ N(u, v)
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5.2 Noise Model

« Spatial and frequency property of noise
— White noise (random noise)

— (Gaussian noise
p(2)=——
2ro
— L. mean ; o .variance

— 70% [(1-0), (ut0)]
— 95 % [(1-20), (ut20)]

e—(Z—,u)z /2072
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5.2 Noise Model

« Rayleigh noise
The PDF Is D

= a)e(z a)’/b for z>a
p(2)=1p?"

0 for z<a

\

e y=a+(7bl4)Y?
« o=b(4-n)/4
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5.2 Noise Model

Erlang (gamma) noise

( aP 701 .
P(Z) =+ (b—l)!e for z>0
0 for z<0
» 1=bla; o=bla’ B
.+ Exponential noise  p(2) = {ae for 2> 0
0 for z<0

e 1=1/3; o=1/a%
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5.2 Noise Model

« Uniformnoise (1
P(2)=1b

.

e 1=(at+b)/2; o=(b-a)¥12
 |mpulse noise (salt and pepper noise)

fora<z<b
a

0 otherwise

P, for z=a
p(z)=<PR for z=b
| 0 otherwise
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5.2 Noise Model
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FIGURE 5.2 Some important probability density functions. _, o
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5.2 Noise Model

FIGURE 5.3 lest
pattern used to
illustrate the
characteristics of
the noise PDFs
shown in Fig. 5.2,
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5.2 Noise Model

sl

Gaussian Rayleigh Gamma
ahc
de

FIGURE 5.4 Images and histograms resulting from adding Gaussian, Ravleigh. and gamma noise to the image
in Fig. 5.3.
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5.2 Noise Model

lafae . Gomzale:

Richard E, Woods

Exponential Uniform Salt & Pepper

€ hi
|

=]

k |

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform. and impulse
noise to the image in Fig. 5.3.
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5.2.3 Noise Model-periodic noise

* Periodic noise 1s due to the electrical or
electromechanical interference during
Image acquisition.

* Can be estimated through the inspection of
the Fourier spectrum of the image.
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5.2.3 Noise Model-periodic noise

a
b

FIGURE 5.5

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum
(each pair of
conjugate
impulses
corresponds to
one sine wave ).
(Original image
courtesy of
NASA.)
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5.2.4 Noise Model- Noise parameters estimation

Use a optical sensor to capture the image of a solid
gray board that is illuminated uniformly.

The resulting image 1s a good indicator of system
noise.

Find the mean # and standard deviation o of the
histogram of the resulting image.

From the ©z and o we can calculate the a and b, the
parameter of that specific noise distribution.
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5.2 Noise Model

Ak

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Ravleigh,
and (c¢) the uniform noisy images in Fig. 5.4,
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5.3 Restoration using spatial filter

« Mean filters
— Arithmetic mean filter

F(X, 2. 9(st)

n (s.)eS,
— Geometric mean filter

—1/mn

f,y)=| J]a(st)
_(S,t)eSxy
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5.3 Restoration using spatial filter

— Harmonic mean filter is good for salt noise not

for pepper noise. f(x y) = mn
1
2

(s,H)eS,y g(sa t)

— Contra-harmonic filter: Q>0 reduce pepper
noise Q<0 reduce salt noise.
2 9(sH"

f(xy)="
> a(st)°
(S)eS,
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5.3 Restoration usmg spatlal fllter

Ehyivichiings o ety v ow IJ 1

i n T S b e T B

!

Seinininiy '

5 G B

s iving

¥ e WS e e

ab
cd

FIGURE 5.7 (a)
X-ray image.

(b) Image
corrupted by
additive Gaussian
noise. (¢) Result
of filtering with
an arithmetic
mean filter of size
3 % 3.(d) Result
of filtering with a
geometric mean
filter of the same
size. (Original
image courtesy of
Mr. Joseph E.
Pascente, Lixi,
Inc.)
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5.3 Restoration using spatial filter

ab
cd

FIGURE 5.8

(a) Image
corrupted by
pepper noise with
a probability of
0.1.(b) Image
corrupted by salt
noise with the
same probability.
(c) Result of
filtering (a) with a
3 X3
contraharmonic
filter of order 1.5.
(d) Result of
filtering (b) with
Q =-15.
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5.3 Restoration using spatial filter

o Order-Statistics filters
Median filter  f(x y)=median{g(s,t)}

. . (5.1,
Max filter: find the brightest points to reduce the

pepper noise

f(xy)= (ggggw{g(s,t)}

Min filter: find the darkest point to reduce the salt
noise ~
f(X,¥y)= min 1g(s,t
(x.y)= min {g(sb)}

Midpoint filter f(x,y) =%[(rgigw{g(s,t)H(ntl)aé((y{g(S,t)}}
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5.3 Restoration using spatial filter

 Alpha-trimmed mean filter

Suppose delete d/2 lowest and d/2 highest
gray-level value in the neighborhood of (S, t)
and average therest.

mN—d (sics,
where d=0 ~ mn-1
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5.3 Restoration using spatial filter

ab
cd

FIGURE 5.10

{(a) Image
corrupted by salt-
and-pepper noise
with probabilities
P,= PF, =01
(b) Result of one
pass with a
median filter of
size 3 X 3.

{c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.
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5.3 Restoration using spatial filter

a i

FIGURE 5.11
AL (a) Result of
filtering

Fig. 5.8(a) with a
max filter of size
3 X 3.(b) Result
of filtering 5.8(b)
with a min filter
of the same size.
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5.3 Restoration using 8
spatial filter |

a b FHGURES.12 (a) Image corrupted by additive uniform noise. (b) Image additionally (or-
¢ d  rupted b additive salt-and-pepper noise. Image in (b) fltered with a3 X 3: (c) arithmetic *
¢ [ meanfilter, (d) seometric mean filter: (¢) median filter, and (£) alpha-trimmed mean fil- §

terwithd =3,
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5.3 Restoration using spatial filter
-Adaptive local noise reduction filter

Measurements for local region S centered at (X, y)
(1) noisy image at (X, Y): g(X, y) with variance 6>
(2) The local mean M in 5
(3) The local variance o2
(4) The local variance of noise is high 62 > ¢?
Conditions: Assume additive noise
(a) Zero-noise case: If 62, =0 then f(X, y)=g(X, y)
(b) Edges: If 6% > o°, then f(X, y)=g(X, ¥)
(¢) If o = o7 then f(X,y)= m, the arithmetic mean
2
. o
f (Xa y) — g(xa y) _(T_Z[g(x, y) o mL]
L
1s unknown, so a test 1s built before filtering

n

: 2
In practice, 6,
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R 5. 3 Restoratlon using spatual ﬁlter

ey
=Y, ab
ko ¢ d

FIGURE 5.13
(a) Image
corrupted by
additive Gaussian
noise of zero
mean and
variance 1000,
(b) Result of
arithmetic mean
filtering.
(c) Result of

geometric mean

filtering.

(d) Result of

adaptive noise 'Y IR EIIIINE YR e
reduction 3 B R &t L X E R R R || ¥
filtering. All filters | wes o . BDAVES & -ry nm;; 111 & T

were of size
7 x 7.
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5.3 Restoration using spatial filter

« Adaptive median filter can handle impulse noise
with larger probability (P, and P, are large).

Increasing(change) window size during operation
* Notations:

Zir—minimum gray-level value in S

Zox—maximum gray-level value in §

Ze—median gray-level value in 5

Z,,~ gray-level at (x,y)
Shex-maximum allowed size of S
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5.3 Restoration using spatial filter

™. The adaptive median filter algorithmworks in two

levels. Aand B
o Level A1 Al=7 7.,

Level B:

A2= Z e Zima

If A1>0 AND A2<0 goto level B
else increase the window size

If window size <SS, repeat level A
else output z,,

Bl= ny'zmin’

B2= zxy'zmax

If B1>0 AND B2<0, output z,,
Else output z
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5 .3 Restoration using spatial filter

'itllﬂth

abc

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P, = F, = (.25, (b) Result of fil-
tering with a7 X 7 median filter. (¢) Result of adaptive median filtering with S, = 7.
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5.4 Restoration using frequency-domain filter
5.4.1 band-reject filter

 Ideal band reject filter

1 if D(u,v)<D,-W/2
H(u,v) =140 if D,-W/2<D(u,v)<D,+W/2
|1 If D(u,v)>D,+W/2

« Butterworth band reject filter

1

DUVW |
D’(u,v)-D;

H(u,v)=

1+
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5.4.1 Restoration using frequency-domain filter

* (Gaussian band reject filter

2
1| D?(u,v)-D¢
2| D(uvW

Hu,v)=1-¢€
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5.4 Restoration using frequency-domain filter

il I

LTI —

e s vl

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.
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Processing 4

5.4 Restoration using freguency-domain filter

FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(¢) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering. (Original
image courtesy of
NASA.)
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5.4.2 Bandpass filter

* Obtained form band reject filter

* To 1solated an 1mage of certain frequency
band.
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5.4 Restoration using freguency-domain filter
Bandpass filter

Rafael €. Gonzalez
Richard €. Woods

FIGURE 5.17
Noise pattern of
the image in

Fig. 5.16(a)
obtained by
bandpass filtering.
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5.4.3 Notch filter

* Notch filter rejects (passes) frequencies in
predefined neighborhoods about a center
frequency. For notch rejects filter as

0 if D(uv)<D, or D,(uv)<D,

H(u,V) = _
1 otherwise

.

where
D,(uv) = [u=M /20" + (v=N/2-v, ]
D, (u,v) = :(U— M /2+u0)2 +(v—N /2_|_V0)2]1/2
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5.4 Restoration using frequency-domain filter
-Notch filter

Butterworth notch reject filter

H(u,v)= :

D? }
1+
D, (u,v)D, (u,v)
Gaussian notch reject filter 1|:D1(U9V) Dz(u,v)}
Huv=1-e’ ™
an(u1 v)=1-H,(u, v)

[t becomes a low-pass filter when u;=V,=0
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FIGURE 5.18 Perspective plots of (a) ideal. (b) Butterworth (of order 2), and (c¢) Gauss

notch (reject) filters.

14n
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=7 o 1 5.4 Restoration using
a frequency-domain filter
de Notch filter

FIGURE 5.19 (a) Satellite image of Florida and the Gulf of Mexico (note horizontal sen- &8
sor scan lines). (b) Spectrum of (a). (c) Notch pass filter shown superimposed on (b). 3
(d) Inverse Fourier transform of filtered image. showing noise pattern in the spatial do-
main. (¢) Result of notch reject filtering. (Original image courtesy of NOAA.)

__.,fa‘" Lo

Use 1-D Notch pass filter to
find the horizontal ripple noise
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5.4.4 Optimal Notch filter

* (learly defined interference is not common.

* Images from electro-optical scanner are corrupted by
periodic degradation.

» Several interference components are present.

* Place a notch pass filter H(u, v) at the location of
each spike, I.e., N(u, v)=H(u, v)G(u, V), where G(U, V)
1s the corrupted 1image.

* 7% Y)=F{H(u, v)G(u, v)}.
* The effect of components not present in the estimate
of n(X, y) can be minimized.
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5.4 Restoration using freguency-domain filter

e

FIGURE 5.20

(a) Image of the
Martian terrain
taken by
Mariner 6.

(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)
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5.4.4 Optimal Notch filter

* The restored image 1s f(X, Y) =09(X YY) —W(X, Y)rn(X,y)

e The weighting function W(X, Y) is found so that the
variance of 1s minimized for a selected neighborhood.

* One way 1s to select W(X, y) so that the variance of the
estimate f(X,y) is minimized over a small local

neighborhood of size (2a+1, 2b+1).

, B 1 b a [ - —~
o’ (X, Y) = Za+T2be1) t_Z_bs_Z_a[f(X-l— s, y+1)— f(x, y)]2

00 %(X,Y) /0 W(X, Y)=0 — to select W(X, Y)
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Image
Processing

5.4.4 Restoration using frequency-domain filter

a=b=15

FIGURE 5.21 Fourier spectrum (without shifting) of the image shown in Fig. 5.2(){a).
(Courtesy of NASAL)
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5.4 Restoration using freqguency-domain filter
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FIGURE 5.22 (a) Fourier spectrum of N (i, v). and (b) corresponding noise interference
pattern n{x, v). (Courtesy of NASA.)
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5.4 Restoration using frequency-domain filter

Fxy)=g0cy) e yn(xy

FIGURE 5.23 Processed image. (Courtesy of NASA.)
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5.5 Linear Position Invariant Degradation

« TheSystem Model 7(x V)

f(x, y) " H "D > 9(xy)

g(X, y): the degraded image

f(x, y) : the original image

7 (X, y): additive noise

H: System function which 1s a linear operator
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5.5 Linear Position Invariant Degradation

9(x, Y)=H[I(X, Y)I+ (X, y)
Assume H is linear and 7(X, y)=0

If g(X, y)=HI[f(X, y)] is position invariant then
H[i(X-a, y-p1=a(x-a, y-f)

g, )=H[I(xy)]+ (X, y)

=[] f (@, p)(x—a,y— B)dadp+ (X, y)

=h(x, y)*1(x, Y)+ 10X, y)
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5.6 Estimating the Degradation Function

* To estimate the degradation function
by Observation

by Experimentation
by Mathematical modeling

(Blind deconvolution)
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5.6 Estimating the Degradation Function

» By observation: construct an unblurred
image of some strong signal content.

* Let the observed image 1s g4(X, y)
» The constructed image is f (x, y)
* Assume the noise 1s negligible

* Find the degradation function H(u, v) which

1s similar to
H_(u,v) = ==Y
F,(U,V)
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5.6 Estimating the Degradation Function

» By experimentation: to obtain the impulse
response of the degradation by imaging an
impulse (small dot of light) using the same
system setting.

* The Four Transform of an impulse 1s a
constant A

* Let g(X, Y) be the observed image.
* Find the degradation function as
H(u, v)=G(u, v)/A
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5.6 Estimating the Degradation Function

ab

FIGURE 5.24
Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.
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5.6 Estimating the Degradation Function
-by modeling

« By Modeling: through experience
* The physical characteristic of turbulence as
H(u’ V): e_k(u2+v2)5/6

 Where K is a constant which depend on the
nature of turbulence.

* [t 1s similar to the Gaussian Low pass.
k=0.0025 (severe turbulence)

k=0.001

k=0.00025 (low turbulence)
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FIGURE 5.25
lllustration of the
atmospheric

turbulence model.

(a) Negligible
turbulence.
(b) Severe
turbulence,

k = 0.0025.
{(c) Mild
turbulence,
ko= 0.001.
(d) Low
turbulence,
ko= 0.00
(Original image
courtesy of
NASA)
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5.6 Estimating the Degradation Function
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5.6 Estimating the Degradation Function
-by modeling

e Through mathematical model
Image f(X, y) is blurred by uniform motion.

* Xy(1) and y,(t) are the time varying component
in X, Y directions.

* The total exposure at any point of the film 1s
obtained by integrating the instantaneous
exposure over the time interval during which
the shutter 1s opened.
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5.6 Estimating the Degradation Function
-by modeling

Horizontal Motion direction y,=0
X-5 | X-4 | X-3 | x-2 | Xx-1| X

T T
g(xa Y) — j f [X — XO (t), y — yO (t)]dt Exposur'e

pixel

e Assume T is duration of
exposure, the blurred 1image

g%, y) 1s

: 0 . \
* Fourier Transform of g(X, Y) is Xo(t)=at/T, T=constant
a=velocity

G(u,v) = Ijg(x, V) exp[— |27z (ux + vy)]dxdy

i
= [[] [ f1x= %00, y = yo (016t |expl— 2w+ vy)Iexcly
0
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5.6 Estimating the Degradation Function
-by modeling

» Reverse the order of integration i
T

G(uv) == [| [ | 11x=%().y = Yo (t)lexpl—j2m(ux+vy)ldxdy ot
0 —o0
 The term 1nside the outer brackets 1s Fourier

transform of the displacement

. Theref(T)re

G(U,V) = j F (U, V) exp[— j 277(Uxq (1) + vy, ()]t
0

T
G(u,Vv) = F(u,v)j exp[— ] 27 (uX, (1) + vy, (t))]dt = F(u,v)H (u,Vv)
0
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5.6 Estimating the Degradation Function
-by modeling

 Assume uniform motion in X direction only, I.€.,
Xo(H)=at/T, y,(1)=0, ais velocity, T=exposure duration
T

+ Simplify H(u,v) = [exp[—j27(ux,(t) + vy, (1)]dt as

T 0
H (U, V) = j exp[— j 272U%, (1))]d
0

T
= j exp[—J2z~uat/T)]dt = Lsin(izua)e_j”ua
zua

- Problem: when u= n/a, H(u, v)=0



Image Comm. Lab EE/NTHU 58

5.6 Estimating the Degradation Function
-by modeling

 If we allow y-component movement, with
the motion given by y,=bt/T then the
degradation function 1s

H (u,v) = ! sin(z(ua + vh))e 7 en®
(ua+ vb)
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5.6 Estimating the Degradation Function
-by modeling

Fs

..........

i

FIGURE 5.26 (a) Original image. (b) Result of blurring using the function in Eq. (5.6-11)
witha=b=0landT = 1.
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5.6 Estimating the Degradation Function
-by spatial modeling

 Assume horizontal motion only (ys=0), then
the blurred image 1s

g(x) = jOT F[x— %, (£)]dt = jOT f(x—at/T)dt
where O<x<L /

, a=displacement /unit time

* Substitute =X —at/T "
we have 0(X)= L_a f(r)dr

 Differentiation with respect to X

g (X)=1(X) ~1(x-a) or 1(X)=g (X)+1(x-a)
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5.6 Estimating the Degradation Function
-by modeling

« Let L=Ka, where K is integer, then Xx=z+ ma where
0 =z=a, m=Integer[x/a], and m=0,1,...K-1.

o Substitute X with z+ ma
f(z+ma)=g (z+ma)+ f(z+(Mm-1)a)

e Denote ¢ (2) as the portion of the scene moves into the
range 0 =zZ=<a during exposure, I1.e., ¢ (2)=f(z-a)

X-5 X-4 X-3 X-2 x-1 X
Z z+1 | z+2 z+3 | z+4 | z+5

d
al

9(2)= f(x-5) =3 (0= (z+5)
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5.6 Estimating the Degradation Function

-by modeling
 For m=0
f(2=9 )+ f(z-a)=9 () +42)
e Form=1
f(z+a)=g (z+a)+ f(2)=g(z+a)+ g (2)+¢(2)
 For m=2

f(z+2a)=g (z+2a)+ g (z+a)+ g (2)+¢(2)

* Finally we have m.
f(z+ma) =) g'(z+ka)+¢(2)
k=0
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5.6 Estimating the Degradation Function
-by modeling

e For Xx=z+ma and 0 <x <L, we have
m
f () =) g'(x—ka)+p(x-ma)
k=0

g(X) is known, we may estimate ¢ (X) to find f(X).

e Since O=Xx-ma=a, so ¢ (X-ma) is repeated K times
during the evaluati(r)nn of f(X) for 0=x =L

* Define f(x)zzg(z— ja)
j=0

 Sowehave ¢(x—ma)= f(X)-— f(x)
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5.6 Estimating the Degradation Function
-by modeling

* For ka=x=(k+1)a, and adding the results
for k=1,....K-1

S

K-1
Kp(x) =D f(x+ka)-» f(x+ka)
k=0 0

=~
I

where m=0and 0 =x=a
* For large value of K (small a)

1K—l ]K_IA ]K_IA
X) = — f(x+ka)—— f(x+ka)= A—— f(x+ ka
¢()Kk§‘( >KKZ:(‘;< ) K§< )

where constant A is the average of f
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5.6 Estimating the Degradation Function

-by modeling
* For ¢(Xx-ma)
K
p(x—ma)~ A—— » f(x+ka—-—ma)
KiS
| Kk
S A—E Zg (X+ka—ma- ja)

* The restored image 1s

f(X)= ) g'(x—ka)+g(x—ma)
k=0
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5.6 Estimating the Degradation Function
-by modeling

(a)

Figure 5.4 (a) Image blurred by uniform linear motion; (b) image restored by using Eq.
(5.4-36). (From Sondhi [1972].)

66
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5.7 Inverse filtering

» With degraded image: g¢=H:-f+n

 Our goal is to find f such that Hf
approximate g in a least square sense

N

n=g—H-{

All2 A A
|’ =g~ nf| =(g-HbH" g-Hi)
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5.7 Inverse filtering

e Minimizing Hn”z = J(f) byusing 8J(f)/of =0
0J(f)/of = —2H' (g — Hf) = 0
f=(H'H)'H'g=H'H")"'H'g=H"g

G(u,v)

* Or we may have F(y,v) =
H(u,v)
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5.7 Inverse filtering

Without noise G(u,v) = H(u,v)F(u,Vv)

G(u,v)

* We have F(u,v):
H(u,Vv)

= F(u,V)

« With noise G(u,v)=H(u,v)F(u,v)+ N(u,V)

N(u, V)
H(u,Vv)

e We have F(u,v)=F(Uu,v)+

+ Restoredimage  f(x,y)=/"{F(u,v)!
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5.7 Inverse filtering

F(u,v)
—

v

1/H(u,v)

v
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5.7 Inverse filtering

ab

cd

FIGURE 5.27
Restoring

Fig. 5.25(b) with
Eq. (5.7-1).

(a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40: (¢) outside a
radius of 70; and
(d) outside a
radius of 83.

Degradation function:

H(u,.v)=eku+v)=
K=0.0025, M=N=480
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;‘h&’ 5.8 Minimum Mean Square Error (Wiener) Filtering

Rafael €. Gonzalez

 Incorporates both the degradation function
and statistical characteristics of noise into
restoration

* Considering both the image and noise as_
random processes, and find an estimate f
of the uncorrupted image f such that the
mean square error between them 1s
minimized

o The error measure is €=E{(f - f )2}



Image Comm. Lab EE/NTHU 73

=S85 3 Minimum Mean Square Error (Wiener) Filtering

* Minimizing the error we have

E{[f(x, y) - f(x,y) Jo(X, ¥')}=0
* For image coordinate pair (X, y) and (X', Y'), we
assume the restoration filter 1s hg(X, Y), and have

E{f 06 90s = | E{lg(xy)g(X, y)ihe(x—a, y— B)dads

» Assume the ideal image and observed image are
jointly stationary, the expectation term can be
expressed as covariance function as

Kig(x=x,y=y)=[ [ Kg(a=X.B-y)(x-a,y-p)dadp
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5.8 Minimum Mean Square Error (Wiener) Filtering

 Take Fourier Transform we have
HR(U1 V):VVfg(u1 V)ng-l(u1 V)
with additive noise
Wig(u, V)=H* (U, V)S(u, V)
Wy,(u, V)= [H(u, V)|* § (U, v)+S (u, V)
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5.8 Minimum Mean Square Error (Wiener) Filtering

Assume the image and noise are uncorrelated

H *(u,v)S; (U,Vv)

S (UVH UV +S,(u,v)

H *(u,v)

HUV)|" +S,uv)/S, (u,v)

1

H (u,v)\2

G(u,Vv)

G(u,Vv)

HUV) [HU,v)|" +S,u,v)/S, (u,v)

G(u,V)
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* H(u, v): the degradation function

* S(U, V=[N, V)|*=power spectrum of the noise

* S(u, vV)=|F(u, V)|*=power spectrum of the
undegraded function

* If noise 1s zero, then 1t becomes an inverse filter.
» For a white noise |N(u, v)|*=constant then

F(u,V) = 1 LICAT] _G(u,v)
HUW) [Hu,v) +K
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5.8 Minimum Mean Square Error (Wiener) Filtering

L b o

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (¢) Wiener filter result.
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kg M ',!1_“ TR R '\:

5.8 Minimum Mean
Square Error
(Wiener) Filtering

FIGURE 5.2% (a) Image corrupted by motion blur and additive noise. (b) Resull of inverse filtering, () Result
of Wicner filtering, {d)-(I) Same sequence, bul with noise variance one order of magnitude less (2)—(1) Samea
sequence, but noise variance redoced by five orders of magnitude from (a). Note in (h) how the deblurred
image is quite visible through a “curtain™ of noise.
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5.9 Constraint Least Squares Filtering

 Difficulty for Wiener filter: the power spectra of the
undegraded image and the noise must be known.

* Only the mean and variance of the noise are required
 (@Given a noisy image in vector form g=H-f +n

with g(X, Y¥) has a size MxN, the matrix H has dimension MN
x MN and H is highly sensitive to noise.

« Base optimality of restoration on a measure of smoothness,
such as the 2nd derivative of an image, I.e.,  v-in-1

C:ZZ[sz(x, y)]2

X=0 y=0
* Find the minimum of C subject to the constraint

- ui| =[]
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5.9 Constraint Least Squares Filtering

* The frequency domain solution to this
optimization problem is

- H*uY)

P(u,v)[

F(u,V) = G(u,Vv)

UV +y

 P(u,v) is Fourier transform of p(X, y)

0O -1 O

px,y)=-1 4 -1
0 -1 0
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Image
Processing

5.9 Constraint Least Squares Filtering

e

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (c) with the Wiener filtering
results in Figs. 5.29(c), (), and (1), respectively.
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5.9 Constraint Least Squares Filtering

* To compute y by iteration as follows.
* Define the residue vectorr: r=g-—Hf

* F(U,V)is a function of y, soisr,

[ ]
P

by (y)=r' r=||r||? is a monotonically increasing
function of y

* Adjust y so that |[r||> =] n|* xa
where a 1s a accuracy factor

 If||r||> =|| m |* then the best solution is found.
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5.9 Constraint Least Squares Filtering

* Because ¢ (y) 1s monotonic, finding vy 1s not
difficult.

Specify an initial y
Compute ||r||?
if ||r||> = || n ||* & is satisfied Stop

if ||r||* <|Im ||* - aincrease y and go to step 2.

Sk o=

if ||r||> > || n ||* - a decrease y and go to step 2.
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5.9 Constraint Least Squares Filtering

« To compute the ||r|]> and || n |]?
* The vector from can also be rewritten as
R(u,V) = G(u,V) — H (u,v)F (u,V)

« Compute the Inverse Fourier transform of R(U, V)
—1N-1

=33 ey

x=0 y=0

* Consider the variance of the noise over the entire 1mage,
using the sample—average method

M—-IN-1 1 M-1N-1
ZZ[W N-m] m=—YYnxy)
N 5550 N ‘= y=0

* So we have || n [|*=MN[c* - m,]
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FIGURE 5.31

(a) lteratively
determined
constrained least
squares
restoration of
Fig. 5.16(b). using
correct noise
parameters.

(b) Result
obtained with
Wrong noise
parameters.
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5.9 Constraint Least Squares Filtering
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Image ¥
Processing At/

5.10 Geometric Mean Filter

Generalized form of Wiener filter:

=] Y] Hewy -
Huv)|" \H(u,v)\“/{?g’://ﬂ

o, 3 are positive real constant

o=1 reduces to inverse filter

o=0 becomes parametric Wiener filter
o=0, =1 standard Wiener filter

o=1/2, B=1 spectrum equalization filter
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5.11 Geometric Transformation

o It is also called Rubber sheet transform,
which consists of two operations:

1) Spatial transformation: rearrangement of
the pixels (locations) on the image.

2) Gray-level interpolation: assignment of
gray levels to pixels in the spatially
transformed 1mage.
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5.11 Geometric Transformation

-Geometric Distortion

Skew

Nonlinearity

Radially

Symmetric Tangentally

Symmetric

TYPICAL SENSOR INTERNAL DISTORTIONS

Aspect Angle Distortion
(Attitude Effects)

Scale Distortion
(Alutude Effect)

l 1

I |

l i

= I |
| I

Terrain Relief

Earth Curvature

TYPICAL EXTERNAL IMAGE DISTORTIONS

Figure 3.12: Common geometric image distortions.

88
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5.11 Geometric Transformation
Spatial transformation

Mapping function T : maps a point from
screen space to a point in texture space

FIGURE 5.32
/7(\ Corresponding
Liepoints in two
" ‘-

image segments.

Screen space Texture space
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5.11 Geometric Transformation
Spatial transformation

* The transformation T may be expressed as
X =T(X, Y)=C X+ Coy+ CaXy+C,

Y =S(X, Y)=CsX+ Cgy+ C,Xy+Cq
Find the tiepoints, which are subset of pixels
whose locations 1n the distorted i1mage (in
screen space) and the corrected 1mages (in
texture space) are known precisely.
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5.11 Geometric Transformation-
Spatial transformation

e (General Transformation:

[xy wl=[u v w|T,

S, S, S
Tl — 821 Szz 823

831 S32 S33

where
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5.11 Geometric Transformation-
Spatial transformation

* T, 1s said to be one-to-one if:
(a) The inverse transformation of T, always exists.

(b) With T, one point in screen space produces only
one point 1n texture space

(¢) Through T,™, each point in texture space can find
the corresponding point in screen space.

=> that is the determinate of T is nonzero.
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5.11 Geometric Transformation-
Spatial transformation

 The 3x3 transformation matrix can be best
understood by partitioning 1t into four
separate sections.

e Rotation: T, {S“ S”}
S Sy

e Translation: [S, S,]
* Perspective transformation: [S, st]T
« Scaling: S,
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5.11 Geometric Transformation-
Spatial transformation

» The general representation of an Affine
transformation is :

all a12 O
[x y 1=[u v Ija, a, 0
_a31 a32 1_

It 1s a planar mapping, that can be used to map an input
triangle to any arbitrary triangle at the output
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5.11 Geometric Transformation-
Spatial transformation

Affine Transformation

Figure 3.5: Affine warps.
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Processing

5.11 Geometric Transformation-
Spatial transformation

mPerspective Transformation

[X’9 y,a W’] = [U,V, W] a21 a22 a23

and letw=1
a,.-u+a,,v+a a,,u+a,,v+a
X — X’/W’ _ 11 21 31 y: yI/Wr _ 12 22 32

If a;; = a,5; = 0 then it becomes Affine Transformation



Spatial transformation

* Perspective projection

P(X,Y,Z)

Y axis
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5.11 Geometric Transformation-

Center of prjection

97
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5.11 Geometric Transformation-
Spatial transformation

* Any position along the projection line 1s
(a,B,7)is  a=X-Xs
B=Y-Y&S
y=2Z—-(Z+D)s

where 0 =Z/(Z+D), and 0< ¢ <1
Xp:X(—Zl ) Yp:Y(—Z1 )
—+1 —+1

D D
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5.11 Geometric Transformation-
Spatial transformation

Figure 3.6: Perspective warps.
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5.11 Geometric Transformation-
Spatial transformation

e Bilinear transformation is defined as
T-W—o2Z Z=W-T

where W=[U, v, 1] and Z=[X,V, 1]
! b, +bv 0]
a, o 1

and a,,a;,a,,a; by,b;,b,,and b; are constant.
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5.11 Geometric Transformation-
Spatial transformation

P4
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5.11 Geometric Transformation-
gray-level interpolation

Spatial transformation

T

wnl”

-

N

|
X' v

S,
.

oy,

f(x.y)

P

d

%

MNeare

st neighbor to (&', ')

\_/

"

Ciray-level assignment

g(x',y')

FIGURE 5.33 Grav-level interpolation based on the nearest neighbor concept.
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5.11 Geometric Transformation-
gray-level interpolation

» Zero-order interpolation: the simplest one.

 Bilinear interpolation: using four neighbors to do
the interpolation for the gray level of non-integer
point at (X', Y'):
v(X',y)=atbx+cy' +dx'y
* The four neighbors located at (X, y;), with known
gray level v; 1=1 and 2, then we have four different
equations as
vi=atbx+cy+dx Y,
* Solving the above four equations for the four
parameters, a, b, ¢, and d.
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5.11 Geometric Transformation

ab
cd
e T

FIGURE 5.34 (a) Image showing tiepoints. (b) Tiepoints after geometric distortion.
(c) Geometrically distorted image, using nearest neighbor interpolation. {d) Restored
result. (&) Image distorted using bilinear interpolation. (f) Restored image.
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5.11 Geometric Transformation-
gray-level interpolation

Input Samples Output  samples

e resampling .

. . . " s
/ m
i ’ | /‘1\ A

" Output Grid |

Spatial Transformatio

I

Resampling
Grid

Image Reconstruction ——

Reconstructed Signal



e resampling
f(u)

Discrete Input

O

Recostructed Input

X) Reconstruct

Warping
x=T(u)
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5.11 Geometric Transformation-
gray-level interpolation

a(x)

Discrete output

Sample s(X)
g9 d(x)
Wﬂeﬁltering \f\‘\
E——
h(x)

X
Warped Input Continuous Output

106

X
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5.11 Geometric Transformation-
gray-level interpolation

| deal warping resampling
9(X) = g¢(X) = gc(x) * h(x) for xe Z
- j f (T (©)h(x—t)dt

= [| 2 (b - ) [hex-tyet

| Jel

= Flwx i)
jeZ
where  y(x, j) = [b(T ™ (t) - Hh(x—t)dt
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5.11 Geometric Transformation-
gray-level interpolation

Table : Elements of ideal resampling.

Stage Mathematical definition

Discrete Input f (U) ueZ

Reconstructed Input f (U)= f(u)*b(u):z £(ib(u= )

jeZ

Warped Signal g.(X)= f(T'(x))

Continuous Output g.(X) = g.(X) *h(x) = j g.(Hh(x—t)dt

Discrete Output

9(X) = g'.(X)s(x)
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5.11 Geometric Transformation-
gray-level interpolation

« Cubic convolution interpolation:using much
larger number of neighbors (i.€., 16) to obtain a
smoother interpolation.

 |deal | nterpolation:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

§ b(u) h(u)
f(u) i Reconstruction fe(u) Warped gé (u) g(x)
—= —= —= Sampler ——=
3 Filter Prefilter }
- i ? ST(9)
Resampling Filter
Warp

109
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5.11 Geometric
Transformation

ab
c d

FIGURE 5.35 {(a) An image before geometric distortion. (b) Image geometrically dis-
torted using the same parameters as in Fig. 5.34{e). (¢) Difference between (a) and (b).
{d) Geometrically restored image.
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